DOI: 10.12442/j.issn.1002-185X.20230395

*M*N_xO_{4-x}作为 ORR/OER 活性位点的电催化 性能研究

卫诗倩 1,2, 刘馨蕊 1, 赵云舒 1, 陈茂霞 1, 吕申壮 1, 范强 1,2, 王芳 3, 胡育 1,2

(1. 乐山师范学院 新能源材料与化学学院,四川 乐山 614004)
(2. 乐山西部硅材料光伏新能源光伏产业技术研究院,四川 乐山 614000)
(3. 西南石油大学 新能源与材料学院,四川 成都 610500)

摘 要:目前开发双功能电催化剂是解决金属-空气电池和燃料电池氧电极电化学过程缓慢及能量转化效率低等问题的 重要手段之一,其中负载过渡金属单原子的氮掺杂石墨烯材料(*M*-N-C)被认为是最有希望替代贵金属的催化材料。研 究表明*M*-N-C 催化剂的高活性归因于其中过渡金属-氮氧配合物(*M*N_xO_{4-x})的存在,为了探究*M*N_xO_{4-x}配位结构对材料 催化性能的影响,本研究基于第一性原理,通过在 Fe-N-C 材料中引入氧构建不同的 FeN_xO_{4-x}(*x* = 0, 1, 2, 3, 4)配合物, 研究金属原子的配位数 *x* 对氧还原反应(ORR)和氧析出反应(OER)催化性能的影响。结果表明,具有 FeN₄配位结 构的 Fe-N-C 材料热力学稳定性及 ORR/OER 催化性能最佳。此外,本研究通过变换过渡金属的种类,即锰、铁、钴、 镍、铜(*M*=Mn、Fe、Co、Ni、Cu),研究过渡金属的种类 *M* 对 *M*N₄催化活性的影响。研究发现,具有 CoN₄配位结构 的 *M*-N-C 材料热力学稳定,且相较于其他 *M*N₄其 ORR 和 OER 催化性能最佳。本研究结果可为调节过渡金属单原子的 配位环境,设计高效双功能电催化剂提供理论参考。

关键词:氮掺杂石墨烯;过渡金属单原子;氧还原反应;析氧反应;第一性原理 中图法分类号:O643.36 文献标识码:A 文章编号:1002-185X(2024)08-2250-09

近年来,将过渡金属单原子,如Ni、Co、Cu、Fe、Mn等,固定于含氮的碳材料,形成的过渡金属-氮-碳材料(*M*-N-C)由于具有较高的催化活性,在析 氢反应(HER)、析氧反应(OER)、氧还原反应(ORR)、 二氧化碳还原反应(CO₂RR)、氮还原反应(NRR)等 领域引起了广泛关注^[1-4]。经过大量研究已证实, *M*-N-C 催化剂的高活性归因于其中过渡金属-氮配合物(*M*N_x)的存在^[5-14]。

目前研究者发现不同的*M*N_x构型对上述反应的活 性以及机理存在差异。首先,*M*N_x中金属原子的配位 数 *x* 是影响*M*-N-C催化剂活性的重要因素。Yang^[5]等 人将镍(Ni)原子分散于氮化石墨烯上,制备得到的 *M*-N-C 材料表现出高效稳定的催化性能,并通过 X 射 线吸收精细结构谱(EXAFS)与密度泛函理论(DFT) 计算结果拟合发现 Ni 原子的配位数 *x*=4 时,形成的 NiN₄ 作为活性中心对材料的活性起着决定性的作用。 在其他 *M*-N-C 中,同样也发现*M*N₄ 可以有效提升材

料的催化活性^[1,6-8]。除了配位数 x=4 得到广泛认可以 外, x 等于其他数值时 M-N-C 材料展现的良好催化性 能同样引起了研究者的注意。Wang^[9]等人通过改变热 解温度控制钴(Co)原子的配位数,分别在800、900 和 1000 ℃下使配位数 x=4、x=3 和 x=2, 经对比发现 当配位数 x=4 减小到 x=2 时,材料的催化活性显著提 升。在其他研究中同样发现配位数 x=2 时,形成的 MN2是决定材料活性的关键^[10-12]。在前期研究中,通 过改变过渡金属单原子种类(第三周期和第四周期的 过渡金属),将其固定于三嗪环之间的孔洞中,发现在 同一周期中随着原子序数增大,配位数从 x=3 减小到 x=2,不利于材料活性的提升[13]。在 Pan[14]等人的研究 发现当配位数 x=5 时, M-N-C 材料中形成的 MN₅作为 活性中心,影响着材料的催化活性。大量的研究表明, MN4是重要的 ORR/OER 活性位点,其对反应中间产 物的吸附作用可以通过引入其他杂原子作为给电子体 或受电子体调节 MN4 的电子结构,比如引入的

收稿日期: 2023-08-07

基金项目:乐山师范学院博士人才启动项目(RC202007);晶硅光伏新能源研究院开放课题(2022CHXK005);乐山师范学院校级学科 建设重点科研项目(LZD024);天然产物化学与小分子催化四川省高校重点实验室开放基金(TRCWYXFZCH2022B05);乐山市重点科 技计划(21GZD002);大学生创新创业训练计划(S202210649101)

作者简介: 卫诗倩, 女, 1992 年生, 博士, 乐山师范学院新能源材料与化学学院, 四川 乐山 614004, E-mail: weishiqian@wx.lsnu.edu.cn

氧(O)元素可以通过夺取电子削弱 FeN4 对中间产 物的强吸附,进而增强 ORR 活性[15-17]。在之前的工 作中^[18]通过研究 Ni-Fe 基双原子催化剂的活性机制也 认识到在 O 掺杂的重要性, 基于第一性原理计算结果 发现,当O与金属配位后形成的Ni-O-Fe键作为电子 转移通道,可以调节活性中心对反应中间产物的吸附 作用,从而提高 OER 活性。综上所述可知,在石墨烯 中引入N、O元素后 MN_xO_{4-x} 的电子结构发生了变化, 可以达到提升电催化剂活性的目的。然而,对于有目 的地通过调控配位数 x 大小实现 M-N-C 材料催化活性 的提升,当前并没有系统的研究。除了配位数以外, MN_xO_{4-x}中过渡金属的种类 M 对材料的活性也至关重 要。Xu^[19]等人通过变换金属种类构建不同的 MN_x结 构,发现对应 M-N-C 材料的适用领域存在差异,比如 FeN4有利于 ORR, CoN4有利于 OER, 而 MnN4有利 于 HER。通过以上的讨论可知, MNxO4-x 作为活性位 点将影响催化过程,但是其中金属原子的配位数 x 及 种类 M 对活性的影响缺乏系统的研究,这使得在设计 M-N-C 材料时缺乏理论依据。

造成以上问题出现的主要原因为,相关的大部分 研究重点在于探讨某一种材料中 MN_xO_{4-x} 的作用,很 少将多种材料中 MN_xO_{4-x}的活性机制作对比研究。当 然,通过传统实验方法去实现这一目的非常困难,因 为不仅需要前期精准合成只含有某种 MN_xO_{4-x}结构的 M-N-C 材料,而且后期将耗费大量的人力和物力完成 相关的测试分析,更具有局限性的是最终依然难以从 电子或者原子水平去探究 MN_xO_{4-x}的活性机制。相较 于传统的研究方法,基于第一性原理的理论计算可以 有效地解决这一难题。例如, Zheng^[11]等人设计了负 载不同过渡金属的 M-N-C 电极材料, 通过第一性原理 计算从中筛选出适用于析氧反应的过渡金属。计算结 果显示 Co 最具有优势,随后他们也通过实验方法证 实 Co-N-C 是一种良好的电极材料。更重要的是,他 们利用第一性原理计算方法发现 Co 与基底材料中 2 个 N 原子之间形成的 CoN2 配合物是决定材料活性的 关键,并找出偏压大小与析氢反应和析氧反应之间的 联系,为实验调节偏压大小提供了参考。这说明第一 性原理方法能够从微观层面系统地研究材料特性,得 出的相关结论可以为实验提供理论依据,有助于指导 实验顺利进行。

总的来说, *M*-N-C 作为一种频繁使用于能源领域的催化材料, 其中 *M*N_xO_{4-x}的存在是提升材料活性的关键,并且随着金属原子的配位数 *x* 及种类 *M* 发生变化。然而,目前 *M*N_xO_{4-x}的配位结构与 *M*-N-C 催化剂

活性之间的联系缺乏系统研究,如何通过调控金属原 子的配位数 x 及种类 M,有效提升 M-N-C 材料的性能 需要展开深入研究。针对这个问题,本项目拟基于第 一性原理方法,选用含氮石墨烯作为基底材料负载过 渡金属单原子,通过调控金属原子的配位数 x 及种类 M,改变 MN_xO_{4-x}的配位结构,构建一系列 M-N-C 材 料的计算模型,以 ORR 和 OER 作为目标反应,从原 子及电子层面探究 MN_xO_{4-x}配位结构对 M-N-C 催化活 性的影响,为制备具有高催化活性的 M-N-C 材料提供 理论依据。

1 计算模型及方法

1.1 计算模型

首先,为了探究金属原子的配位数 x 对 M-N-C 材 料 ORR/OER 性能的影响,以 Fe-N-C 为研究对象,通 过引入氧构建不同的 FeN_xO_{4-x} (x = 0, 1, 2, 3, 4) 配合 物。第 1 种,Fe 原子与 4 个 N 原子形成配合物,记为 FeN₄ (图 1a);第 2 种,以 1 个 O 原子替换 FeN₄中的 1 个 N 原子,记为 FeN₃O₁ (图 1b);第 3 种,以 2 个 O 原子替换 FeN₄中的 2 个相邻的 N 原子,记为 FeN₂O₂ (图 1c);第 4 种,以 3 个 O 原子替换 FeN₄中的 3 个 N 原子,记为 FeN₁O₃ (图 1d);第 5 种,以 4 个 O 原 子替换 FeN₄中的 4 个 N 原子,记为 FeO₄ (图 1e)。 图 1 中,棕色小球代表碳原子,灰蓝色小球代表氮原 子,红色小球代表氧原子,古铜色小球代表铁原子。 接下来,以 FeN_xO_{4-x}为活性位点,构建 ORR/OER 中 间产物 (OH*、O*、OOH*) 的吸附构型。

另外,为了探究过渡金属种类 M 对 M-N-C 材料 电催化性能的影响,将 M 分别用锰、铁、钴、镍、铜 (M=Mn、Fe、Co、Ni、Cu)替换,构建不同的 MN4 结构,如图 2 所示,图中玫红色小球代表锰原子,深 蓝色小球代表钴原子,银色小球代表镍原子,蓝色小 球代表铜原子。接下来以 MN4 为活性位点,构建 ORR/OER 中间产物(OH*、O*、OOH*)的吸附构型。

1.2 参数设置

本研究所有的计算均是在 VASP 5.4.1 软件中完成,采用 GGA/PEB 方法处理关联泛函,使用 Grimme 方法对色散力进行校正。平面波函数的截 断能设置为 450 eV,真空层的厚度设置为 1.5 nm,单个原子的能量收敛标准为 1×10⁻⁴ eV/atom,原子间相互作用力不超过 0.2 eV/nm,K 点设置为 3×3×1,所有的计算均在倒易空间中进行。另外,在收敛测试中发现将截断能、K 点、原子间相互作 用力以及能量收敛标准值设置为以上参数时可以

图 1 FeNxO4-x的原子结构

Fig.1 Structures of FeN_xO_{4-x}: (a) FeN₄, (b) FeN₃O₁, (c) FeN₂O₂, (d) FeN₁O₃, and (e) FeO₄

图 2 MN4的原子结构 Fig.2 Structures of MN4: (a) MnN4, (b) FeN4, (c) CoN4, (d) NiN4, and (e) CuN4

获得稳定能量(约464.02 eV,偏差不超过2.23×10⁻⁴ eV,可忽略),说明本研究的计算参数可靠。

2 结果与分析

2.1 热力学稳定性分析

欲将 *M*-N-C 作为 OER 和 ORR 反应的催化剂,需要保证其热力学稳定。过渡金属单原子的形成能 *E*f 是判断此类材料热力学稳定性的重要依据,可以基于以下公式^[20]进行计算:

$$E_{\rm f} = E_{\rm tot} - E_{\rm sub} - E_M \tag{1}$$

其中, *E*_{tot} 为 *M*-N-C 的总能量, *E*_{sub} 为 *M*-N-C 去掉 *M* 单原子后优化得到的基底材料能量, *E*_M 为 *M* 原子在 对应体相材料中的能量。*E*_f 的值越负说明原子结构的 热力性稳定性越佳。

对于 FeN_xO_{4-x},基于公式(1)算得 FeN₄、FeN₃O₁、 FeN₂O₂、FeN₁O₃、FeO₄中 Fe 单原子的形成能依次为 -1.49、6.79、1.48、6.79、4.84 eV。这说明在 Fe-N-C 中引入 O 元素后会使催化剂的热力学稳定性下降,其 中 FeN₄是最稳定的配合物结构。此结论与之前报道的 结果^[15-17]相符合,意味着本研究的计算结果可靠。另 外,通过计算 Bader 电荷发现,以上 5 种结构中 Fe 单 原子与基底材料之间的电荷转移量依次为 1.07、0.93、 0.97、0.92、0.97 e。电荷转移量越多,有利于增强 Fe 单原子与基底材料之间的相互作用,使其能够稳定的 负载于氮掺杂石墨烯表面,而氧的引入会使 Fe 单原子 与基底材料之间的电荷转移量减少,因此在 FeN_xO_{4-x} 中 FeN4结构的热力学稳定性最佳。

对于 *M*N₄,基于公式(1)算得 MnN₄、FeN₄、CoN₄、 NiN₄、CuN₄中过渡金属单原子的形成能依次为-2.64、 -1.49、-0.49、0.75、3.68 eV。这说明随着原子序数增大, 催化剂的热力学稳定性逐渐下降。另外,通过计算 Bader 电荷发现,以上 5 种结构中过渡金属单原子与基底材料 之间的电荷转移量依次为 1.29、1.07、0.87、0.86、0.94 e。 可以发现随着原子序数增大电荷转移量逐渐减少,直到 CuN₄中电荷转移量增加。电荷转移量逐渐减少,直到 CuN₄中电荷转移量增加。电荷转移量的减少,将减弱过 渡金属单原子与基底材料之间的相互作用,使其热力学 稳定性降低,形成能值变正,这可能与价电子的排布方 式出现变化有关。催化剂的形成能值为正时,虽然意味 着其稳定性较差,但是也可以通过一定的实验手段进行 合成^[21-24]。随后将探索 *M*N_xO_{4.x} 的 OER 和 ORR 活性, 为设计此类材料提供理论依据。

2.2 OER 和 ORR 活性分析

为了探究 $MN_xO_{4,x}$ 结构变化对 OER 和 ORR 反应 活性的影响,根据 Nørskov^[25]团队提出的方法研究了 活性位点上 OER 和 ORR 的反应途径。以 Fe-N-C 材料 表面 FeN₄ 作为活性位点吸附 OH*,计算 ΔG_{OH*} 为例: 根据 Nørskov^[25]团队提出的公式可知 $\Delta G_{OH*} = \Delta E_{OH*} + \Delta ZPE_{OH*} + T\Delta S$,其中 ΔE_{OH*} 为 OH*吸附于 Fe-N-C 表 面的能量差,其数值等于吸附 OH*后 Fe-N-C 的总能 量(-459.35 eV),减去 Fe-N-C 的能量(-448.67 eV), 再加上 1/2 的 H₂ 的能量(-6.77 eV),最后再减去 H₂O 的能量(-14.22 eV),算得 ΔE_{OH*} =0.16 eV;其中 ΔZPE_{OH*} 为 OH*吸附在 Fe-N-C 表面零点能的变化值, 其数值等于 Fe-N-C 上 OH*的零点能 (0.35 eV), 加上 1/2的H2的零点能(0.28eV),再减去H2O的零点能(0.57eV), 则ΔZPE_{OH*} = -0.083 eV; 其中 TΔS 为 0.38 eV。因此, 根据以上数据可以得到 $\Delta G_{OH*} = 0.46 \text{ eV}$ 。利用同样的 方法可以算出, ΔGo*=1.20 eV 和ΔGooH*=3.35 eV。根 据ΔGOH*、ΔGO*和ΔGOOH*,可以算出 ORR/OER 4 电子 转移过程的 ΔG_1 、 ΔG_2 、 ΔG_3 、 ΔG_4 。由 Nørskov^[25]团队 提出的计算方法可知, ΔG_1 为第1个电子转移过程中 OH 失去电子产生 OH*的吉布斯自由能变化值,其值 等于ΔGoH*=0.46 eV; ΔG2 为第 2 个电子转移过程中产 生 O*的吉布斯自由能变化值,其值等于ΔGo*减去 ΔG_{OH*} , 即 $\Delta G_2=0.74 \text{ eV}$; ΔG_3 为第三个电子转移过程 中产生 OOH*的吉布斯自由能变化值, 其值等于 ΔG_{OOH*} 减去 ΔG_{O*} ,即 $\Delta G_3=2.15$ eV; ΔG_4 为第4个电子 转移过程产生 O₂的吉布斯自由能变化值,其值等于 4.92 eV 减去 ΔG_{OOH*} , 即 $\Delta G_4=1.57$ eV。由此得到的 ΔG_1 、 ΔG_2 、 ΔG_3 、 ΔG_4 ,可以算出过电势 η 的值。对于 OER 过程, η_{OER} 等于 ΔG_{max} (ΔG_1 、 ΔG_2 、 ΔG_3 、 ΔG_4 中的最 大值)减去标准状态下的平衡电位(1.23 eV),即ηOER = 2.15 eV-1.23 eV = 0.92 eV。对于 ORR 过程, η_{ORR} 等 于标准状态下的平衡电位(1.23 eV)减去 ΔG_{\min} (ΔG_1 、 ΔG_2 、 ΔG_3 、 ΔG_4 中的最小值), 即 $\eta_{ORR} = 1.23 \text{ eV} - 0.46 \text{ eV}$ = 0.77 eV。利用相同的方法可以计算得到其他情况下

ORR/OER 的过电势,以判断 *M*N_xO_{4-x} 作为活性位点时 的电催化性能。

当以 FeN_xO_{4-x}为 OER 和 ORR 活性位点时,其能 阶图如图3所示。图中标明了4电子转移过程对应的 吉布斯自由能变化情况。利用 ΔG_1 、 ΔG_2 、 ΔG_3 、 ΔG_4 可以算出 OER 和 ORR 的过电势大小。对于 OER 过程, η_{OER}从大到小排列情况为: FeN₃O₁ (7.69 eV)、FeO₄ (2.02 eV), FeN₁O₃ (1.47 eV), FeN₂O₂ (1.19 eV), FeN₄ (0.92 eV)。可以发现当 *x*=4 时, η_{OER} 最低, 仅 为 0.92 eV, 即在 Fe-N-C 材料表面以 FeN4 作为活性位 点其 OER 活性最高。对于 ORR 过程, ŋorr 从大到小 排列情况为:FeN3O1(8.23 eV)、FeO4(2.87 eV)、FeN1O3 (2.33 eV), FeN₂O₂ (1.13 eV), FeN₄ (0.77 eV), \square 然当 x=4 时, 完成 ORR 的过电势最低仅为 0.77 eV, 即以 FeN4 作为活性位点时 Fe-N-C 具有最高的 ORR 活性。因此,在FeNxO4-x中,最有益于促进ORR/OER 进行的配位结构为 FeN4, 在设计 Fe-N-C 材料结构时 可以优先考虑以获得良好的电催化性能。

基于以上研究结果,接下来将通过变换过渡金属 *M*的种类研究*M*的差异对*M*N₄电催化活性的影响。 如图 4 所示,具有*M*N₄配位结构的*M*-N-C 材料其η_{0ER}从 大到小排列顺序为:MnN₄(1.40 eV)、NiN₄(1.21 eV)、 FeN₄(0.92 eV)、CuN₄(0.88 eV)、CoN₄(0.40 eV)。 可以发现,以CoN₄为活性中心时OER的过电

图 3 吉布斯自由能能阶图 Fig.3 Gibbs energy profiles: (a) FeN₄, (b) FeN₃O₁, (c) FeN₂O₂, (d) FeN₁O₃, and (e) FeO₄

势最低, 仅为 0.40 eV。另外, 将具有 *M*N₄ 配位结构 的 *M*-N-C 其η_{ORR} 从大到小进行排列, 分别为 CuN₄ (1.19 eV)、NiN₄ (1.09 eV)、MnN₄ (0.82 eV)、FeN₄ (0.77 eV)、CoN₄ (0.31 eV),显然以 CoN₄ 为活性中 心时 ORR 过电势最低,仅为 0.31 V。因此,具有 CoN₄ 配位结构的 *M*-N-C 最有利于促进 ORR 和 OER 进行。 综上所述可知,当 *M*N_xO_{4-x} 中配位数 *x* = 4 且 *M* = Co 时, *M*-N-C 材料的 ORR/OER 催化活性最佳。

2.3 自由能曲线分析

针对 *M*N_xO_{4-x}结构变化引起的 ORR/OER 催化活 性改变,本论文将探究能够预测其电催化性能的描述 符。研究表明,ORR/OER 3 种含氧中间体的吉布斯自 由能变化值(Δ*G*OH*、Δ*G*O*和Δ*G*OOH*)存在一定的线 性关系,通常用于反映中间体与活性位点之间的相互 作用强度,并进一步描述过电势的大小。这种线性关 系可用于确定 ORR/OER 的关键中间体,并预测 *M*N_xO_{4-x}活性位点的电催化性能。

对于 FeN_xO_{4-x}, 研究了 3 种反应中间体吉布斯自 由能变化值(ΔG_{OH*} 、 ΔG_{O*} 和 ΔG_{OOH*})之间的线性关 系,如图 5 所示。 ΔG_{OOH*} 和 ΔG_{O*} 分别与 ΔG_{OH*} 之间的 关系可以用线性方程 $\Delta G_{OOH*} = \Delta G_{OH*} + 3.13$ eV (R_2 =0.995)和 $\Delta G_{O*} = \Delta G_{OH*} + 0.84$ eV (R_2 =0.995)表 示,说明 ΔG_{OOH*} 和 ΔG_{O*} 均与 ΔG_{OH*} 存在良好的线性关 系。在图 5b 中, ΔG_{OOH*} 和 ΔG_{O*} 之间的线性关系

- 图 5 FeN_xO_{4,x} 作为活性位点时中间体吉布斯自由能变化值之 间的比例关系
- Fig.5 Scaling relationships for the Gibbs energies of intermediates absorbed on FeN_xO_{4-x}: (a) scaling relationships between ΔG_{OOH*} and ΔG_{OH*};
 (b) scaling relationships between ΔG_{OOH*} and ΔG_{O*}

可以用方程 $\Delta G_{OOH*} = \Delta G_{O*} + 2.28 \text{ eV} (R_2=0.997) 表示,$ $说明 <math>\Delta G_{OOH*} = \Delta G_{O*}$ 之间存在良好的线性关系。由于 ΔG_{OOH*} 、 $\Delta G_{O*} = \pi \Delta G_{OH*} = 3$ 者之间均表现出良好的线性 关系,因此 ΔG_{OOH*} 、 $\Delta G_{O*} = \pi \Delta G_{OH*}$ 均可以作为预测 FeN_xO_{4-x} 电催化活性的描述符。

同样的,对于 MN_4 ,3 种含氧中间体的吉布斯自由能 变化值(ΔG_{OH*} 、 ΔG_{OOH*} 和 ΔG_{OOH*})之间同样存在线性关系。 如图 6a 所示, ΔG_{OOH*} 和 ΔG_{OOH*} 之间向关系可 以用线性方程 ΔG_{OOH*} =0.95 ΔG_{OH*} +3.05 eV(R_2 =0.950) 和 ΔG_{O*} =2.11 ΔG_{OH*} +0.26 eV(R_2 =0.976)表示。显然, 根据其线性关系可以发现 ΔG_{OOH*} 和 ΔG_{O*} 均与 ΔG_{OH*} 存在 良好的线性关系。然而, ΔG_{OOH*} 与 ΔG_{O*} 之间存在较差的 线性关系,如图 6b 所示,二者之间的线性关系可以用方 程 ΔG_{OOH*} =0.43 ΔG_{O*} +2.97 eV(R_2 =0.890)表示。因此, 在 MN_4 活性位点上,可以用 ΔG_{OH*} 作为 OER 和 ORR 催化 性能的描述符。综上所述可知,对于 MN_xO_{4x} 可以将 ΔG_{OH*} 作为预测其 OER 和 ORR 催化活性的描述符,用以判断 MN_xO_{4x} 结构变化对 M-N-C 电催化性能的影响。

图 6 以 *M*N₄作为活性位点时中间体吉布斯自由能变化值之间 的线性关系

Fig.6 Scaling relationships for the Gibbs energies of intermediates absorbed on MN_4 : (a) scaling relationships between ΔG_{O^*} and ΔG_{OH^*} , or between ΔG_{OOH^*} and ΔG_{OH^*} ; (b) scaling relationships between ΔG_{OOH^*} and ΔG_{O^*}

2.4 火山曲线分析

探讨了 ΔG_{OH*} 与过电势之间的火山曲线关系,用于证实将 ΔG_{OH*} 作为 OER 和 ORR 催化活性描述符的可行性。

在 FeN_xO_{4-x}活性位点上,将 ΔGOH*作为ηOER 和ηORR 描述符的火山曲线图如图 7 所示。从图中可以发现, 随着过渡金属的配位数 x 改变, ΔGOH*的值发生变化, FeN_xO_{4-x}展现的 OER 和 ORR 催化活性也随之改变。 将ΔGOH*从小到大依次排序为: FeN₃O₁ > FeO₄ > FeN₁O₃ > FeN₂O₂ > FeN₄。另外, OER 反应进行的难易 程度从难到易为: FeN₃O₁ > FeO₄ > FeN₄ORR 反应进行的难易程度从难到易为: FeN₃O₁ > FeO₄ > FeN₄; ORR 和 OER 能够有效提高 Fe-N-C 材料的 ORR 和 OER 活性,这与图 3 的结论相符。因此,可以将 ΔG_{OH*}作为 ORR 和 OER 催化活性的描述符预测 Fe-N-C 的电催化性能。

同时,也探讨在 MN4 活性位点上ΔG_{OH*}与过电势 之间的火山曲线关系。图 8a 和 8b 分别显示了使用

- 图 7 FeN_xO_{4-x}活性位点上 η_{OER} 与 ΔG_{OH*} 的火山曲线图以及 η_{ORR} 与 ΔG_{OH*} 的火山曲线图
- Fig.7 Calculated OER volcano curve of the η_{OER} as the function of ΔG_{OH^*} (a) and calculated ORR volcano curve of the η_{ORR} as the function of ΔG_{OH^*} (b) on FeN_xO_{4-x}

Δ*G*_{OH*}作为η_{OER} 描述符的火山曲线和Δ*G*_{OH*}作为η_{ORR} 描述符的火山曲线。在图 8a 中,可以发现改变过渡金属的种类 *M* 会使 *M*N₄ 的 OER 反应活性发生变化,其难 易程度从难到易依次为: MnN₄>NiN₄> FeN₄> CuN₄> CoN₄。在图 8b,同样可以发现改变过渡金属的种类 *M* 会使 *M*N₄ 的 ORR 活性发生变化,其难易程度从难到 易依次为: CuN₄> NiN₄> MnN₄> FeN₄> CoN₄。在火山曲线中随着Δ*G*_{OH*}的增大出现活性转折点,即当 4 个氮原子与钴原子形成 CoN₄ 配合物时,具有最佳的 ORR 和 OER 活性,这与图 4 的结论相符。综上所述 可知,可以借助Δ*G*_{OH*}作为 ORR 和 OER 活性的描述 符预测 *M*N_xO_{4-x} 的电催化性能。

2.5 d 带中心分析

*M*N_xO_{4-x}的 ORR/OER 电催化性能与其电子结构密 切相关。对于过渡金属而言,OOH*、OH*和 O* 3 种 中间产物的吸附强度是由过渡金属的 d 带中心决定。 研究表明相较于费米能级,d 带中心位置越远,催化 剂与反应中间体的相互作用就越弱;d 带中心位置离 费米能级的位置越近,那么催化剂与反应中间体的相 互作用就越强^[26]。根据 Sabatier 原则,最好的催

图 8 MN₄材料中η_{OER}与ΔG_{OH*}的火山曲线和 MN₄材料中η_{ORR} 与ΔG_{OH*}的火山曲线

化剂应该是以中等强度结合分子、原子,催化剂与吸 附中间产物的结合能力太强不利于产物的生成,太弱 又不能激活反应物[27]。通过计算 MNxO4-x 的电子结构 分析其结构变化导致 M-N-C 材料电催化性能产生差 异的原因。通过对 FeNxO4-x 不同配位结构中 Fe 的分波 电子态密度(PDOS)进行计算,获得 Fe 的 d 带中心 位置, 如图 9a 所示。将过渡金属 Fe 的 d 带中心位置与 费米能级位置的距离从近到远排列: FeN4(-0.811 eV)、FeO4 (-0.811 eV), FeN_2O_2 (-1.055 eV), FeN_1O_3 (-1.394 eV), FeN₃O₁(-1.435 eV)。这说明 FeN_xO_{4-x}中 Fe 与中间产 物的相互作用越强越有利于提升其 OER 和 ORR 催化 活性。同样地,通过对 FeN_xO_{4-x}不同配位结构中 Fe 的分波电子态密度(PDOS)进行计算,获得 Fe 的 d 带中心位置,如图9a所示。将过渡金属Fe的d带中心位置 与费米能级位置的距离从近到远排列: FeN4(-0.811 eV)、 $FeO_4(-0.811 \text{ eV})$, $FeN_2O_2(-1.055 \text{ eV})$, $FeN_1O_3(-1.394 \text{ eV})$, FeN₃O₁(-1.435 eV)。这说明 FeN_xO_{4-x}中 Fe 与中间产 物的相互作用越强越有利于提升其 OER 和 ORR 催化活 性。同样地,通过对 MN4 不同配位结构中 M 的分波电 子态密度 (PDOS) 进行计算, 获得 M 的 d 带中心位置, 如图 9b 所示。将过渡金属 M 的 d 带中心位置与费米能 级位置的距离从近到远排列: MnN4(-0.502 eV)、FeN4 (-0.811 eV), CoN₄ (-1.077 eV), NiN₄ (-1.713 eV),

图 9 MN_xO_{4-x} 中 M 的分波电子态密度

Fig.9 Partial density of states of M in MN_xO_{4-x} : (a) FeN_xO_{4-x} and (b) MN_4

CuN₄(-3.693 eV)。可以发现 CoN₄中 Co 的 d 带中心 为-1.077 eV,处于中间位置,意味着相较于其他材料, CoN₄活性中心与反应中间产物的相互作用既不太强 也不太弱,符合 Sabatier 原则。这是 CoN₄配位结构具 有最佳 OER 和 ORR 催化活性的原因。综上所述, *M*N_xO_{4-x}中过渡金属的 d 带中心位置是决定 *M*-N-C 材 料电催化性能的关键因素。

3 结 论

1)本研究基于第一性原理,通过引入 O 替换 N 并变化过渡金属的种类使 *M*N_xO_{4-x} 配合物的结构发生 改变,发现配位数 *x*=4 且 *M*=Co 时 *M*-N-C 的原子结构 热力学稳定且具有最佳的 ORR 和 OER 活性,可作为 双功能催化剂被开发。

2)通过建立ΔG_{OH*}、ΔG_{O*}、ΔG_{OOH*}、η_{ORR} 和η_{OER} 之间的联系,发现针对 MN_xO_{4-x} 的电催化性能,可以 借助ΔG_{OH*}作为描述符进行预测,筛选出 CoN₄ 具有最 佳的电催化活性。

3)通过分析 MNxO4-x 的电子结构,发现其 ORR/OER 活性与过渡金属的d带中心位置有关,适当 的d带中心位置使 CoN4作为活性位点与反应中间产 物的结合能力既不太强也不太弱,这是保证其具有优 异 ORR/OER 催化性能的关键。

参考文献 References

- [1] Li Xide(李喜德), Liu Yuzuo(刘羽祚), Zhang Chuo(张 绰) et al. Rare Metal Materials and Engineering(稀有金属材料与工程)[J], 2022, 51(11): 4117
- [2] Li Hongpeng(李鸿鹏), Jiang Yunbo(蒋云波), He Jianyun(何建云). Rare Metal Materials and Engineering(稀有金属材料与工程)[J], 2023, 52(4): 1345
- [3] Feng Qing, Wang Kuaishe, Xue Jianchao et al. Rare Metal Materials and Engineering[J], 2022, 51(8): 2810
- [4] Zhou Ying(周 颖), He Peinan(贺培楠), Feng Haisong(丰海松) et al. Chemical Journal of the Chinese Universities(高等学校 化学学报)[J], 2022, 43(2): 78
- [5] Yang Hong Bin, Hung Sung Fu, Liu Song et al. Nano Energy[J], 2018, 3: 140
- [6] Osmieri Luigi, Videla Alessandro H A Monteverde, Ocón Pilar et al. The Journal of Physical Chemistry C[J], 2017, 121: 17796
- [7] Hu Xinming, Hval Halvor Høen, Bjerglund Emil Tveden et al. ACS Catalysis[J], 2018, 8: 6255

- [8] Mun Yeongdong, Lee Seonggyu, Kim Kyeounghak et al. Journal of the American Chemical Society[J], 2019, 141: 6254
- [9] Wang Xiaoqian, Chen Zhao, Zhao Xuyan et al. Angewandte Chemie-International Edition[J], 2018, 57: 1944
- [10] Wu Haihua, Li Haobo, Zhao Xinfei et al. Energy & Environmental Science[J], 2016, 9: 3736
- [11] Zheng Yao, Jiao Yan, Zhu Yihan et al. Journal of the American Chemical Society[J], 2017, 139: 3336
- [12] Zhu C Z, Shi Q R, Xu B Z et al. Advanced Energy Materials[J], 2018, 8: 1801956
- [13] Wei Shiqian, Wang Fang, Dan Meng et al. International Journal of Hydrogen Energy[J], 2020, 45: 17480
- [14] Pan Yuan, Lin Rui, Chen Yinjuan et al. Journal of the American Chemical Society[J], 2018, 140: 4218
- [15] Li Ming, Chen Shanhua, Li Bing et al. Electrochim Acta[J], 2021, 388: 138587
- [16] Ni Wenpeng, Gao Yang, Zhang Yi et al. ACS Applied Materials & Interfaces[J], 2019, 11: 45825
- [17] Mun Yeongdong, Lee Seonggyu, Kim Kyeounghak et al. Journal of the American Chemical Society[J], 2019, 141: 6254
- [18] Wan Wenchao, Zhao Yonggui, Wei Shiqian et al. Nature Communication[J], 2021, 12: 5589
- [19] Xu Haoxiang, Cheng Daojian, Cao Dapeng et al. Nature Catalysis[J], 2018, 1: 339
- [20] Guo Xiangyu, Gu Jinxing, Lin Shiru et al. Journal of the American Chemical Society[J], 2020, 142: 5709
- [21] Sun Yanyan, Silvioli Luca, Sahraie Nastaran Ranjbar et al. Journal of the American Chemical Society[J], 2019, 141: 12372
- [22] Zhao Lu, Zhang Yun, Huang Linbo et al. Nature Communications[J], 2019, 10: 1278
- [23] Chen Jiangyue, Li Hao, Fan Chuang et al. Advanced Materials[J], 2020, 32: 2003134
- [24] Gao Jiajian, Yang Hong bin, Huang Xiang et al. Chem[J], 2020, 6: 658
- [25] Nørskov J K, Rossmeisl J, Logadottir A et al. The Journal of Physical Chemistry B[J], 2004, 108: 17886
- [26] Zhou Yanan, Gao Guoping, Kang Jun et al. Journal of Materials Chemistry A[J], 2019, 7: 12050
- [27] Bligaard T, Nørskov J K, Dahl S et al. Journal of Catalysis[J], 2004, 224: 206

Electrocatalytic Performance of *MN*_xO_{4-x} as Active Sites for ORR/OER

Wei Shiqian^{1,2}, Liu Xinrui¹, Zhao Yunshu¹, Chen Maoxia¹, Lv Shenzhuang¹, Fan Qiang^{1,2}, Wang Fang³, Hu Yu^{1,2}

(1. School of New Energy Materials and Chemistry, Leshan Normal University, Leshan 614004, China)

(2. Leshan West Silicon Materials Photovoltaic and New Energy Industry Technology Research Institute, Leshan 614000, China)

(3. School of New Energy and Materials, Southwest Petroleum University, Chengdu 610500, China)

Abstract: At present, developing bifunctional electrocatalysts plays an important role in the field of metal-air batteries and fuel cells. Non-noble transition metal single atoms loaded on the nitrogen-doped graphene sheets (*M*-N-C) are considered to be the most promising materials to replace noble metal electrocatalysts owing to the metal coordination compounds (MN_xO_{4-x}) in *M*-N-C with high catalytic activity. In this work, oxygen atoms were introduced in Fe-N-C to construct FeN_xO_{4-x} (x=0, 1, 2, 3, 4) for the investigation on the effect of coordination number x on the catalytic performance of ORR/OER. It is found that Fe-N-C shows the best thermodynamic stability and catalytic activity when x=4. In addition, the effect of transition metal type was studied by introducing different transition metals, such as *M* = Mn, Fe, Co, Ni, Cu, in *M*N₄. Among them, the thermodynamically stable CoN₄ structure is the best choice for *M*-N-C to reach the highest ORR/OER catalytic activity. It is expected that this research could provide a theoretical reference for adjusting the coordination environment of transition metal single atoms and designing high efficient bifunctional electrocatalysts.

Key words: nitrogen-doped graphene; transition metal single-atom catalysts; oxygen reduction reaction; oxygen evolution reaction; first principle

Corresponding author: Hu Yu, Ph. D., Professor, School of New Energy Materials and Chemistry, Leshan Normal University, Leshan 614004, P. R. China, Tel: 0086-833-2270785, E-mail: huyugucas@126.com