DOI: 10.12442/j.issn.1002-185X.20230680

双硅酸盐高熵材料热稳定性研究

丁坤英,贾治豪,孔祥芬,王梦潇,王 者,张 涛

(中国民航大学 天津市民用航空器适航与维修重点实验室, 天津 300300)

摘 要:通过固相反应制备了 Yb₂Si₂O₇ 和高熵双硅酸盐粉末(Yb_{0.25}Lu_{0.25}Er_{0.25})₂Si₂O₇、(Yb_{0.2}Y_{0.2}Lu_{0.2}Er_{0.2}Sc_{0.2})₂Si₂O₇、(Yb_{0.2}Y_{0.2}Lu_{0.2}Er_{0.2}Ho_{0.2})₂Si₂O₇,对原始和保温处理后 4 种陶瓷块体的物相组成、弹性模量、热导率和热膨胀系数进行分析。 结果表明:高熵(Yb_{0.25}Y_{0.25}Lu_{0.25}Er_{0.25})₂Si₂O₇的热膨胀系数和热导率与 Yb₂Si₂O₇相似,弹性模量上升了 29.75%; (Yb_{0.2}Y_{0.2}Lu_{0.2}Er_{0.2}Sc_{0.2})₂Si₂O₇与(Yb_{0.25}Y_{0.25}Lu_{0.25}Er_{0.25})₂Si₂O₇ 相比热膨胀系数和热导率分别降低了 5.59%和 24.78%;与 (Yb_{0.25}Y_{0.25}Lu_{0.25}Er_{0.25})₂Si₂O₇相比(Yb_{0.2}Y_{0.2}Lu_{0.2}Er_{0.2}Ho_{0.2})₂Si₂O₇的热膨胀系数上升了 14.24%,热导率下降了 15.51%。这表明 添加了 Ho 元素的(Yb_{0.2}Y_{0.2}Lu_{0.2}Er_{0.2}Ho_{0.2})₂Si₂O₇热导率下降,热膨胀系数增加后与基底 CMC 的热膨胀系数更为接近。在 1200 和 1300 ℃保温 10、30、50 h 后,Yb₂Si₂O₇、(Yb_{0.25}Y_{0.25}Lu_{0.25}Er_{0.25})₂Si₂O₇、(Yb_{0.2}Y_{0.2}Lu_{0.2}Er_{0.2}S_{0.2})₂Si₂O₇、(Yb_{0.2}Si₂O₇、(Yb_{0.2}Y_{0.2}Lu_{0.2}Er_{0.2}Ho_{0.2})₂Si₂O₇、(Yb_{0.2}Si₂O₇、(Yb_{0.2}Y_{0.2}Lu_{0.2}Er_{0.2}Si₂O₇)₂Si₂O₇和导率下降,热膨胀系数增加后与基底 CMC 的热膨胀系数更为接近。在 1200 和 1300 ℃保温 10、30、50 h 后,Yb₂Si₂O₇、(Yb_{0.2}SY_{0.25}Lu_{0.25}Er_{0.25})₂Si₂O₇、(Yb_{0.2}Y_{0.2}Lu_{0.2}Er_{0.2}Si₂O₇、(Yb_{0.2}Si₂O₇和导率下降, 但依然与基底 CMC 的热膨胀系数相接近,它们的弹性模量随着保温 时长的增加而增加。

关键词:高熵双硅酸盐,热环境障涂层,热导率,热膨胀系数,弹性模量
 中图法分类号:TQ174.75⁺8.11
 文献标识码:A
 文章编号:1002-185X(2024)10-2968-07

航空发动机的涡前温度随着推重比升高而逐渐增 大^[1-3]。为了提升耐高温能力、减少用空气冷却,涡轮部 件采用 SiC 陶瓷基复合材料(ceramic matrix composite, CMC)制造。与高温镍基合金相比,CMC 具有低密 度(<2.0 g·cm⁻³)、高比强度和比模量、优异耐腐蚀和 抗蠕变等性能^[4-9]。然而在服役过程中,CMC 会被氧气 和高温水蒸气腐蚀,生成挥发性气态产物,导致材料性 能下降甚至失效^[10-13]。环境障涂层(environmental barrier coatings, EBCs)则可以减少水蒸气与 CMC 之间的相互 作用,有效解决上述问题。

第1代环境障涂层是大气等离子喷涂在硅基陶瓷表 面沉积的莫来石涂层。第2代环境障涂层是一个拥有多 层结构的涂层体系,主要由Si粘结层、莫来石或莫来石 +钡锶铝硅酸盐(BaO-SrO-Al₂O₃-SiO₂, BSAS)中间层和 BSAS 面层共同组成。目前主流的是第3代环境障涂层 稀土硅酸盐,但由于其服役温度的限制,需要寻找一种 既可以抗高温,也可以耐水氧腐蚀的热环境障涂层 (thermal environmental barrier coatings, TEBCs)^[14-15]。

目前的研究趋势是利用先进的多组元高熵陶瓷 (high-entropy ceramics, HECs)^[16-17]设计稀土硅酸盐来 制备 TEBCs。这种通过引入稀土阳离子的高熵化设计可 以改善硅酸盐材料的性能。如 Chen^[18]和 Dong^[19]等人加 入 Yb、Lu 和 Gd 等元素制备的高熵硅酸盐陶瓷块体在 高温下具有稳定的相结构和低热导率。Guo 等人^[20]制备 的高熵(Lu_{0.2}Yb_{0.2}Er_{0.2}Tm_{0.2}Sc_{0.2})₂Si₂O₇在高温下具有良好 相稳定性,同时其热膨胀系数(coefficient of thermal expansion, CTE)还低于每个稀土元素 RE₂Si₂O₇的热膨 胀系数(RE=Lu, Yb, Er, Tm, Sc)。研究表明 Sc, Yb 和 Lu 可以稳定稀土硅酸盐 β 相^[21], Sc 和 Ho 可以调 节热膨胀系数, Sc 和 Nd 可以降低导热系数^[22-23]。这些 结果为 TEBCs 成分设计提供了参考, 但是多组元稀土 RE 元素与 TEBCs 性能对应关系并不明确,而且高 温下掺杂稀土元素的 TEBCs 热物性能变化的文献 较少。因此本工作选取 Yb、Y、Lu、Er、Sc 和 Ho,利 用固相无压烧结,制备了 Yb₂Si₂O₇和 3 种高熵双硅酸盐 $(Yb_{0.25}Y_{0.25}Lu_{0.25}Er_{0.25})_{2}Si_{2}O_{7}$, $(Yb_{0.2}Y_{0.2}Lu_{0.2}Er_{0.2}Sc_{0.2})_{2}$ -Si₂O₇、(Yb_{0.2}Y_{0.2}Lu_{0.2}Er_{0.2}Ho_{0.2})₂Si₂O₇ 陶瓷块体。测试 4 种陶瓷块体的相组成、弹性模量、热导率和热膨胀系 数,并探究经过1200和1300℃高温长时间保温后上述 性能的变化。为高熵稀土双硅酸盐热环境障涂层材 料在未来大推重比航空发动机的实际应用中提供 基础。

基金项目:中央高校基本科研业务费专项资金(3122019189)

收稿日期: 2023-10-30

作者简介: 丁坤英, 男, 1981 年生, 博士, 教授, 中国民航大学天津市民用航空器适航与维修重点实验室, 天津 300300, E-mail: dingkunying@126.com

1 实 验

以稀土 RE₂O₃(RE=Y, Er, Yb, Lu, Sc, Ho)(纯度 99.99%,中国合肥凯米克生化科技有限公司)和 SiO₂(纯 度 99.99%,中国合肥凯米克生化科技有限公司)为原 料,遵循各自的化学计量比称量,通过固相反应合成 高熵双硅酸盐(Yb_{0.25}Y_{0.25}Lu_{0.25}Er_{0.25})₂Si₂O₇(4RE)、 (Yb_{0.2}Y_{0.2}Lu_{0.2}Er_{0.2}Sc_{0.2})₂Si₂O₇(5RE₁)、(Yb_{0.2}Y_{0.2}Lu_{0.2}Er_{0.2}-Ho_{0.2})₂Si₂O₇(5RE₂);用 Yb₂O₃:SiO₂=1:2 制备 Yb₂Si₂O₇ 粉末。用压片机将粉末压制成陶瓷块体,压力为 20 MPa。 在 1500 ℃无压烧结 3 h 得到 Yb₂Si₂O₇ 粉末和陶瓷块 体;在 1600 ℃无压烧结 6 h 得到高熵 4RE、5RE₁和 5RE₂ 粉末和陶瓷块体。

利用日本 Rigaku SmartLab SE 型 X 射线衍射(X-ray diffraction, XRD)测定合成陶瓷块体的相组成。利用 PCY-高精度热膨胀仪测试样品 400~1400 ℃范围内的热膨胀系数。利用美国 Kla imicro 型纳米压痕仪器测试样品的弹性模量。利用激光闪光分析仪测量样品在氮气环境下从 0 ℃到 1000 ℃的热扩散系数,并根据公式(1) 计算样品的热导率 k。

k=*α*ρ*C*_p (1) 式中, *α* 是热扩散系数 (cm²·s⁻¹); *ρ* 是密度 (取 5.54 g·cm⁻³); *C*_p是热容 (在 0~1000 ℃范围内取 2.6~ 4.8 J·g⁻¹·K⁻¹)。

2 结果与讨论

2.1 高熵双硅酸盐与 Yb₂Si₂O₇ 陶瓷粉末的微观结构和 物相分析

图 1 是 Yb₂Si₂O₇、4RE、5RE₁和 5RE₂ 粉末的微观 形貌图。从图中可以,4种陶瓷粉末颗粒呈现无规则的 块状。图 2 是 Yb₂Si₂O₇、4RE、5RE₁和 5RE₂ 粉末的 XRD 图谱。从图中可以看出,4 种陶瓷粉末的 XRD 与 标准 XRD 卡片 Yb₂Si₂O₇(PDF#82-0734)的衍射峰最 匹配,均为 β 相结构,单斜晶晶系,C2/m(12)空间 群。这说明成功制备了高熵双硅酸盐粉末 4RE、5RE₁ 和 5RE₂。

2.2 高熵双硅酸盐与 Yb₂Si₂O₇陶瓷块体的物相分析

图 3a 是 Yb₂Si₂O₇、4RE、5RE₁和 5RE₂陶瓷块体的 XRD 图谱。从图中可以看出,制备的陶瓷块体 4RE、5RE₁和 5RE₂的 XRD 与标准 XRD 卡片 Yb₂Si₂O₇ (PDF#82-0734)的衍射峰最匹配,均为β相结构。从图 3b 的 XRD 可以看出,5RE₁和 5RE₂在(111)和(021)处的衍射峰发生 了偏移。这是由于掺杂的稀土 RE 元素使陶瓷块体发生 了晶格畸变,导致衍射峰发生了偏移。稀土 RE 元素的 离子半径尺度如表 1 所示,其中高熵 5RE₁由于添加了小 半径稀土离子 Sc³⁺,它的衍射峰向大角度方向偏移。高 熵 5RE₂由于添加了大半径稀土离子 Ho³⁺,它的衍射峰 向小角度方向偏移。

图 1 Yb₂Si₂O₇、4RE、5RE₁和 5RE₂ 粉末的 SEM 照片 Fig.1 SEM images of Yb₂Si₂O₇ (a), 4RE (b), 5RE₁ (c) and 5RE₂ (d) powders

图 2 Yb₂Si₂O₇、4RE、5RE₁和 5RE₂ 粉末的 XRD 图谱 Fig.2 XRD patterns of Yb₂Si₂O₇, 4RE, 5RE₁ and 5RE₂ powders

图 3 Yb₂Si₂O₇、4RE、5RE₁和 5RE₂陶瓷块体的 XRD 图谱 Fig.3 Overall (a) and localized (b) XRD patterns of Yb₂Si₂O₇, 4RE, 5RE₁ and 5RE₂ ceramic blocks

表 1 稀土(RE)元素的离子半径 Table 1 Ionic radius of rare earth (RE) elements (nm)

) ()
Element	Ionic radius
Sc	0.745
Lu	0.861
Yb	0.868
Y	0.900
Er	0.890
Но	0.901

图 4 是 Yb₂Si₂O₇、4RE、5RE₁和 5RE₂陶瓷块体弹 性模量的均值,它们的数值分别为 140.64、182.48、 191.22、190.04 GPa。与 Yb₂Si₂O₇相比 4RE、5RE₁和 5RE₂ 的弹性模量分别上升了 29.75%、35.96%和 35.12%。表 明随着稀土 RE 元素(RE=Lu, Yb, Y, Ho, Sc, Er)的掺 杂,高熵双硅酸盐弹性模量呈现上升的趋势。

如图 5 是 Yb₂Si₂O₇、4RE、5RE₁和 5RE₂ 陶瓷块体

图 4 Yb₂Si₂O₇、4RE、5RE₁和 5RE₂ 陶瓷块体的弹性模量

Fig.4 Elastic modulus of Yb₂Si₂O₇, 4RE, 5RE₁ and 5RE₂ ceramic blocks

图 5 Yb₂Si₂O₇、4RE、5RE₁和 5RE₂ 陶瓷块体的热导率

Fig.5 Thermal conductivity of Yb₂Si₂O₇, 4RE, 5RE₁ and 5RE₂ ceramic blocks

的热导率。从图中可以看出,4 种陶瓷块体的热导率随 温度的升高而上升,并趋于稳定,因此本研究用 900 ℃ 作为深层更高温度时的热导率。其中 4RE、5RE₁和 5RE₂ 陶瓷的热导率均低于 Yb₂Si₂O₇。这是由于 4RE、5RE₁和 5RE₂陶瓷块体中含有不同稀土阳离子,离子之间质量 和半径相差较大,这种离子质量和半径无序降低了声子 的平均自由程,增强了声子的散射^[24-25],导致 4RE、5RE₁ 和 5RE₂陶瓷块体热导率与 Yb₂Si₂O₇相比会有降低,因 此添加 Sc 和 Ho 元素会降低材料的热导率。

与基底具有相似的热膨胀系数对于热环境障涂层材 料来说是重要的,图6是Yb₂Si₂O₇、4RE、5RE₁和5RE₂ 陶瓷块体的热膨胀系数。从图中可以看出,4种陶瓷块 体的热膨胀系数随着温度的升高而增大,并逐渐趋于稳 定。在400~1400℃内高熵双硅酸盐Yb₂Si₂O₇、4RE、5RE₁ 和5RE₂的热膨胀系数为2.0×10⁻⁶~4.8×10⁻⁶ K⁻¹。这与Si粘 结层的CTE(3.3×10⁻⁶~4.5×10⁻⁶ K⁻¹)、块状SiC和SiC₄/SiC 基体复合材料的热膨胀系数(4.5×10⁻⁶~5.9×10⁻⁶ K⁻¹)随温 度变化的趋势相同。这表明4RE、5RE₁和5RE₂作为热

图 6 Yb₂Si₂O₇、4RE、5RE₁和 5RE₂陶瓷块体的热膨胀系数 Fig.6 Coefficients of thermal expansion of Yb₂Si₂O₇, 4RE, 5RE₁ and 5RE₂ ceramic blocks

环境障涂层时不会与基底 CMC 之间出现较大应变,降低了涂层开裂和剥落的风险^[26]。

表 2 是 Yb₂Si₂O₇、4RE、5RE₁和 5RE₂陶瓷块体的 晶格常数。由于陶瓷材料的热膨胀系数与晶格中的原子 间距成正比^[27]。因此结合图 6 和表 2 可以得出,添加了 小半径稀土离子 Sc³⁺的高熵 5RE₁ 晶格常数 *a*、*b*、*c* 和热 膨胀系数与高熵 4RE 相比, 晶格常数减小, 热膨胀系数 在 400~1400 ℃内下降了 5.59%。而添加了大半径稀土离 子 Ho³⁺的高熵 5RE₂的晶格常数 *a、b、c* 和热膨胀系数 都比高熵 4RE 的大, 其中在 400~1400 ℃内 5RE₂ 热膨胀 系数增加了 14.24%。这种添加了 Ho 元素的高熵 5RE₂ 热膨胀系数的增加使其在高温时更贴近基底 CMC 的热 膨胀系数。

2.3 高熵双硅酸盐与 Yb₂Si₂O₇陶瓷块体热稳定性分析

图 7 是 Yb₂Si₂O₇、4RE、5RE₁和 5RE₂陶瓷块体经过 1300 ℃保温 50 h 后的 XRD 图谱。从图中可以看出,随着 保温时间的延长,4 种陶瓷块体中均没有新相产生,衍 射峰也没有发生偏移,证明在这个体系中,添加 Y、Er 和 Lu 元素会促进在高温下都有良好的相稳定性。

图 8 是 Yb₂Si₂O₇、4RE、5RE₁和 5RE₂陶瓷块体未 保温和 1300 ℃保温 30、50 h 后的弹性模量。从图中可 以看出,随着保温时间的增加,4 种陶瓷块体的弹性模 量也随之增加。

图 9a 是高熵 5RE₁在 1300 ℃下保温 0、10、30 和 50 h 的热膨胀系数。从图中可以看出,高熵 5RE₁的热膨 胀系数随着高温保温时长的增加会有降低。图 9b 和 9c 是 Yb₂Si₂O₇、4RE、5RE₁ 和 5RE₂ 陶瓷块体在 1200 和

表 2	Yb ₂ Si ₂ O ₇ ,	4RE	5RE ₁	和 5RI	至2 陶瓷	發块体的晶	ı格常数	
) T	tion constant	to of VI	S: 0	4DF	5DF	and SDF		blook

Table 2 Lattice constants of 10251207, 4KE, 5KE1 and 5KE2 certainic blocks						
Material	Structure	Space group	a/nm	<i>b</i> /nm	c/nm	β/(°)
$Yb_2Si_2O_7$	Monoclinic	C2/m	0.69454	0.87340	0.47445	102.62
4RE	Monoclinic	C2/m	0.69350	0.87357	0.47396	102.76
5RE ₁	Monoclinic	C2/m	0.68607	0.87239	0.47160	102.14
5RE ₂	Monoclinic	C2/m	0.70729	0.89153	0.48663	103.05

- 图 7 Yb₂Si₂O₇、4RE、5RE₁和 5RE₂陶瓷块体 1300 ℃保温 50 h 的 XRD 图谱
- Fig.7 XRD patterns of Yb_2Si_2O_7, 4RE, 5RE_1 and 5RE_2 ceramic blocks held at 1300 $\,^\circ\!\mathrm{C}\,$ for 50 h
- 图 8 未保温和 1300 ℃保温 30、50 h 后 Yb₂Si₂O₇、4RE、5RE₁ 和 5RE₂陶瓷块体的弹性模量
- Fig.8 Elastic modulus of $Yb_2Si_2O_7$, 4RE, $5RE_1$ and $5RE_2$ ceramic blocks without insulation and held at 1300 $^\circ$ C for 30 and 50 h

图 9 保温后陶瓷块体的热膨胀系数

Fig.9 Coefficients of thermal expansion of ceramic blocks after insulation: (a) 5RE₁ held at 1300 °C for 0, 10, 30 and 50 h; (b) Yb₂Si₂O₇, 4RE, 5RE₁ and 5RE₂ held at 1200 °C for 50 h; (c) Yb₂Si₂O₇, 4RE, 5RE₁ and 5RE₂ held at 1300 °C for 50 h

1300 ℃保温 50 h 后的热膨胀系数。从图中可以看出,随着温度的升高,4 种陶瓷块体的热膨胀系数随之增加。因为此涂层适用于高温下的工作环境,因此本研究比对的是高温 1400 ℃时的热膨胀系数。在 1200 和 1300 ℃保温 50 h 后,与高熵 4RE 相比,添加了 Sc 元素的高熵 5RE₁的热膨胀系数平均下降了 6.10%和 5.39%;添加了 Ho 元素的高熵 5RE₂的热膨胀系数平均增加了 2.03%和 1.24%。这说明保温 50 h 后,温度的升高对 4RE、5RE₁和 5RE₂陶瓷块体热膨胀系数影响很小。

2.4 讨论

高熵(Yb_{0.25}Y_{0.25}Lu_{0.25}Er_{0.25})₂Si₂O₇的热膨胀系数和热 导率与Yb₂Si₂O₇相似,弹性模量上升29.75%。(Yb_{0.2}Y_{0.2}-Lu_{0.2}Er_{0.2}Sc_{0.2})₂Si₂O₇与(Yb_{0.25}Y_{0.25}Lu_{0.25}Er_{0.25})₂Si₂O₇相 比,其热膨胀系数和热导率分别下降了5.59%和24.78%。 (Yb_{0.2}Y_{0.2}Lu_{0.2}Er_{0.2}Ho_{0.2})₂Si₂O₇与(Yb_{0.25}Y_{0.25}Lu_{0.25}Er_{0.25})₂Si₂O₇ 相比,热膨胀系数增加了14.24%,热导率下降了15.51%。 这表明在Yb₂Si₂O₇中添加稀土元素(RE=Y, Lu, Er, Sc, Ho)会使材料的弹性模量上升。因为多组分的高熵硅酸 盐具有比单组分材料更复杂的结构,原子间的作用力更 强,且其内部产生的晶格畸变使材料的强度和硬度增加, 导致高熵硅酸盐的弹性模量上升。

添加 Sc 和 Ho 元素的材料热导率降低,是因为如公 式(2)(3)可知陶瓷的热导率正比于声子的平均自由 程 *l*_{ΔM} 和 *l*_{ΔR}^[24-25], *l*_{ΔM} 表示受质量影响的声子的平均自 由程, *l*_{AR} 表示受离子半径影响的声子的平均自由程。

$$\frac{1}{t_{\rm AM}} = \frac{c\alpha^3 \omega^4}{4\pi \upsilon^3} A_{\rm l}^2 \tag{2}$$

$$\frac{1}{\mu_{\Delta R}} = \frac{2c\alpha^3\omega^4}{\pi\nu^3} J^2\gamma^2 A_2^2$$
(3)

式中, α^3 为原子体积;v为横波波速; ω 为声子频率;c为点缺陷浓度;J为常数; γ 为 Grüneisen 常数; A_1 为晶格质量差; A_2 为晶格畸变。

由于高熵陶瓷块体中含有不同稀土阳离子,离子之 间质量和半径相差较大,这种点缺陷浓度增加,离子质 量和半径的差别降低了声子的平均自由程,增强了声子 的散射,导致(Yb_{0.2}Y_{0.2}Lu_{0.2}Er_{0.2}Sc_{0.2})₂Si₂O₇和(Yb_{0.2}Y_{0.2}-Lu_{0.2}Er_{0.2}Ho_{0.2})₂Si₂O₇的热导率与 Yb₂Si₂O₇和比会有降 低。将(Yb_{0.25}Y_{0.25}Lu_{0.25}Er_{0.25})₂Si₂O₇视为掺杂的基体材料,点 缺陷浓度一致,如表 3 可知,添加稀土 Sc 元素的 A_1 与 A_2 比添加 Ho 元素的数值高出 1 个数量级,因此根据公

表 3 热导率相关参数

Table 3 Related thermal	conductivity	parameters
-------------------------	--------------	------------

Material	Equivalent RE relative atomic mass	Equivalent RE ³⁺ radius/nm
$(Yb_{0.25}Y_{0.25}Lu_{0.25}Er_{0.25})_2Si_2O_7$	151.046	0.0879
$\mathbf{Sc}_{2}\mathbf{Si}_{2}\mathbf{O}_{7}$	44.956	0.0745
$Ho_2Si_2O_7$	164.93	0.0901
$(Yb_{0.2}Y_{0.2}Lu_{0.2}Er_{0.2}Sc_{0.2})_2Si_2O_7$	$A_1\!\!=\!\!0.70$	A ₂ =0.15
$(Yb_{0.2}Y_{0.2}Lu_{0.2}Er_{0.2}Ho_{0.2})_2Si_2O_7$	$A_1 = -0.09$	$A_2 = -0.02$

式可知添加了 Sc 元素的高熵稀土双硅酸盐热导率更低。

添加 Sc 和 Ho 元素的热膨胀系数不同是由于其材料 内部声子的正负 Grüneisen 常数比例不同所导致的。一 类声子的 Grüneisen 常数为正,有助于正热膨胀,主要 是位于高频区 Si-O 键的拉伸振动^[28]。另一类声子的 Grüneisen 常数为负,有助于负热膨胀,主要是位于低频 区 RE-O 的振动模式。这 2 类声子都有助于热膨胀行为。 如图 10 所示是 4RE、5RE1 和 5RE2 的拉曼光谱,从图中 可以看出添加小离子半径 Sc 的高熵(Yb0.2Y0.2Lu0.2-Er_{0.2}Sc_{0.2})₂Si₂O₇在400~675 cm⁻¹(RE-O 的振动模式)之 间的拉曼峰变宽,增加了负膨胀声子的比例,所以 (Yb_{0.2}Y_{0.2}Lu_{0.2}Er_{0.2}Sc_{0.2})₂Si₂O₇热膨胀系数降低。而添加了 大离子半径 Ho 元素的高熵(Yb0.2Y0.2Lu0.2Er0.2Ho0.2)2Si2O7在 830~1000 cm⁻¹ (Si-O 键的拉伸振动) 之间的拉曼峰出现 了变宽和移动,导致材料正膨胀声子比例增加,使其热 膨胀系数增加。且它在 400~1400 ℃范围内的热膨胀系 数为 2.56×10⁻⁶~4.75×10⁻⁶ K⁻¹, 这与基底 CMC 的热膨胀 系数(4.5×10⁻⁶~5.9×10⁻⁶ K⁻¹)最接近。综上所述,高熵 (Yb_{0.2}Y_{0.2}Lu_{0.2}Er_{0.2}Ho_{0.2})₂Si₂O₇ 具有低的热导率和与基底 更接近的热膨胀系数更适合作为航空发动机热环境障涂 层材料。

在经过 1200 和 1300 ℃保温 50 h 后, Yb₂Si₂O₇、 (Yb_{0.25}Y_{0.25}Lu_{0.25}Er_{0.25})₂Si₂O₇、(Yb_{0.2}Y_{0.2}Lu_{0.2}Er_{0.2}Sc_{0.2})₂Si₂O₇和(Yb_{0.2}Y_{0.2}Lu_{0.2}Er_{0.2}Ho_{0.2})₂Si₂O₇的 XRD 均没有新相出 现,表明它们具有良好的高温相稳定性。4 种陶瓷块体 的弹性模量均随着温度的升高而增加,其中在 1300 ℃保 温 50 h 后,(Yb_{0.2}Y_{0.2}Lu_{0.2}Er_{0.2}Sc_{0.2})₂Si₂O₇的弹性模量与 Yb₂Si₂O₇、(Yb_{0.25}Y_{0.25}Lu_{0.25}Er_{0.25})₂Si₂O₇和(Yb_{0.2}Y_{0.2}Lu_{0.2}-Er_{0.2}Ho_{0.2})₂Si₂O₇相比为最大。与未经保温处理的 Yb₂Si₂O₇、(Yb_{0.25}Y_{0.25}Lu_{0.25}Er_{0.25})₂Si₂O₇、(Yb_{0.2}Y_{0.2}Lu_{0.2}-Er_{0.2}Sc_{0.2})₂Si₂O₇和(Yb_{0.2}Y_{0.2}Lu_{0.2}Er_{0.2}Ho_{0.2})₂Si₂O₇陶瓷块 体相比,经过 1200和 1300 ℃保温 50 h 后 4 种陶瓷块体 的热膨胀系数分别下降了 2.53%和 2.24%、2.18%和

图 10 4RE、5RE₁和 5RE₂的拉曼光谱

Fig.10 Raman spectra of 4RE, 5RE1 and 5RE2

1.73%、2.94%和 2.08%、3.19%和 2.95%,依然保持在 2.0×10⁻⁶~4.8×10⁻⁶ K⁻¹范围内。添加了 Ho 元素的(Yb_{0.2}Y_{0.2}-Lu_{0.2}Er_{0.2}Ho_{0.2})₂Si₂O₇ 在保温后热膨胀系数依然为最 大,与基底的热膨胀系数匹配性最好。

3 结 论

 利用无压烧结制备了 Yb₂Si₂O₇ 和高熵双硅酸盐 (Yb_{0.25}Y_{0.25}Lu_{0.25}Er_{0.25})₂Si₂O₇、(Yb_{0.2}Y_{0.2}Lu_{0.2}Er_{0.2}Sc_{0.2})₂Si₂O₇ 和(Yb_{0.2}Y_{0.2}Lu_{0.2}Er_{0.2}Ho_{0.2})₂Si₂O₇ 陶瓷块体,在4 种陶瓷 块体中添加了 Ho 元素的高熵(Yb_{0.2}Y_{0.2}Lu_{0.2}Er_{0.2}-Ho_{0.2})₂Si₂O₇具有低的热导率和与基底更接近的热膨胀系 数,更适用于作为热环境障涂层材料。

2)对 Yb₂Si₂O₇、(Yb_{0.25}Y_{0.25}Lu_{0.25}Er_{0.25})₂Si₂O₇、 (Yb_{0.2}Y_{0.2}Lu_{0.2}Er_{0.2}Sc_{0.2})₂Si₂O₇和(Yb_{0.2}Y_{0.2}Lu_{0.2}Er_{0.2}Ho_{0.2})₂Si₂O₇ 陶瓷块体研究表明,在这个体系中添加 Y、Er 和 Lu 元 素会促进材料相稳定性; Sc 和 Ho 元素降低材料热导率; Sc 元素会降低材料热膨胀系数,Ho 元素增加材料热膨 胀系数。

3) 经过 1200 和 1300 ℃保温后,Yb₂Si₂O₇和高熵双 硅 酸 盐 (Yb_{0.25}Y_{0.25}Lu_{0.25}Er_{0.25})₂Si₂O₇、 (Yb_{0.2}Y_{0.2}Lu_{0.2}-Er_{0.2}Sc_{0.2})₂Si₂O₇、 (Yb_{0.2}Y_{0.2}Lu_{0.2}Er_{0.2}Ho_{0.2})₂Si₂O₇陶瓷块体 表现出良好的相稳定性,与未保温处理的 4 种陶瓷块体 相比,保温后的 4 种陶瓷块体在 1400 ℃时的热膨胀系数 降低,弹性模量增加。

参考文献 References

- [1] Mou Fei(牟 飞), Xu Tong(徐 彤), Li Guangrong(李广荣) et al. Materials China(中国材料进展)[J], 2023, 42(12): 993
- [2] Jiang Yijun(江义军). Journal of Aerospace Power(航空动力学报)[J], 2001, 16(2): 103
- [3] Jiao Jian(焦健), Qi Zhe(齐哲), Lv Xiaoxu(吕晓旭) et al. Aerospace Power(航空动力)[J], 2019(5): 17
- [4] Christin F. Advanced Engineering Materials[J], 2002, 4(12): 903
- [5] Li Chongjun, Crosky Alan. Composites Science and Technology[J], 2006, 66(15): 2633
- [6] Gaab Lotta, Koch Dietmar, Grathwohl Georg. Carbon[J], 2010, 48(10): 2980
- [7] Zhang Xuesong, Chen Yongjun, Hu Junling. Progress in Aerospace Sciences[J], 2018, 97: 22
- [8] Yin X M, Han L Y, Liu H M et al. Advanced Functional Materials[J], 2022, 32(35): 2204965
- [9] Li Hejun, Wang Yongjie, Fu Qiangang et al. Journal of Materials Science and Technology[J], 2015, 31(1): 70
- [10] Dong Lin(董 琳), Yang Guanjun(杨冠军), Zhang Xiaofeng(张 小锋) et al. China Mechanical Engineering(中国机械工程)[J],

2022, 33(12): 1459

- [11] Eaton H E, Linsey G D. Journal of the European Ceramic Society[J], 2002, 22(14): 2741
- [12] Lee K N, Fox D S, Bansal N P. Journal of the European Ceramic Society[J], 2005, 25(10): 1705
- [13] Zhang Menghua(张孟华), Pang Zixuan(庞梓玄), Jia Yunxiang(贾云祥) et al. Journal of Aeronautical Materials(航 空材料学报)[J], 2021, 41(5): 14
- [14] Turcer L R, Padture N P. Scripta Materialia[J], 2018, 154: 111
- [15] Nguyen S T, Nakayama T, Suematsu H et al. Ceramics International[J], 2016, 42: 11314
- [16] Wang Xu, Cheng Minghao, Xiao Guozheng et al. Corrosion Science[J], 2021, 192: 109786
- [17] Dong Y, Ren K, Wang Q K et al. Journal of Advanced Ceramics[J], 2022, 11(1): 66
- [18] Chen Heng, Xiang Huimin, Dai Fuzhi et al. Journal of Materials Science & Technology[J], 2020, 36: 134
- [19] Dong Yu, Ren Ke, Lu Yonghong et al. Journal of the European

Ceramic Society[J], 2019, 39(7): 2574

- [20] Guo Xiaotong, Zhang Yulei, Li Tao et al. Journal of the European Ceramic Society[J], 2022, 42(8): 3570
- [21] Felsche J. Structure & Bonding[J], 1973, 13(3): 99
- [22] Ridley Mackenzie, Gaskins John, Hopkins Patrick et al. Acta Materialia[J], 2020, 195: 698
- [23] Turcer L R, Sengupta A, Padture N P. Scripta Materialia[J], 2021, 191: 40
- [24] Chen Xiaoge, Tang An, Zhang Hongsong et al. Ceramics International[J], 2016, 42(12): 13491
- [25] Wu J, Wei X Z, Padture N P et al. Journal of the American Ceramic Society[J], 2004, 85(12): 3031
- [26] Ren Xiaomin, Zhang Jie, Wang Jingyang. Journal of the European Ceramic Society[J], 2022, 42(15): 7258
- [27] Stokes J L, Harder B J, Wiesner V L et al. Journal of the American Ceramic Society[J], 2020, 103(1): 622
- [28] Luo Yixiu, Sun Luchao, Wang Jiemin et al. Journal of the European Ceramic Society[J], 2018, 38(4): 2043

Study on Thermal Stability of High-Entropy Bisilicate Materials

Ding Kunying, Jia Zhihao, Kong Xiangfen, Wang Mengxiao, Wang Zhe, Zhang Tao (Tianjin Key Laboratory of Civil Aircraft Airworthiness and Maintenance, Civil Aviation University of China, Tianjin 300300, China)

Abstract: Yb₂Si₂O₇ and high-entropy bisilicate powders (Yb_{0.25}Y_{0.25}Lu_{0.25}Er_{0.25})₂Si₂O₇, (Yb_{0.2}Y_{0.2}Lu_{0.2}Er_{0.2}Sc_{0.2})₂Si₂O₇, (Yb_{0.2}Y_{0.2}Lu_{0.2}Er_{0.2}Sc_{0.2})₂Si₂O₇, (Yb_{0.2}Y_{0.2}Lu_{0.2}Er_{0.2}-Ho_{0.2})₂Si₂O₇ were prepared by solid phase reaction. The phase composition, coefficient of thermal expansion, thermal conductivity, and elastic modulus of the four ceramic blocks were analyzed before and after heat preservation treatment. The results show that the coefficient of thermal expansion and thermal conductivity of high-entropy (Yb_{0.25}Y_{0.25}Lu_{0.25}Er_{0.25})₂Si₂O₇ are similar to those of Yb₂Si₂O₇, and the elastic modulus is increased by 29.75%. Compared with (Yb_{0.25}Y_{0.25}Lu_{0.25}Er_{0.25})₂Si₂O₇, the coefficient of thermal expansion and thermal conductivity of (Yb_{0.2}Y_{0.2}Lu_{0.2}Er_{0.2}So_{0.2})₂Si₂O₇ are decreased by 5.59% and 24.78%, respectively. Compared with (Yb_{0.25}Y_{0.25}Lu_{0.25}Er_{0.25})₂Si₂O₇, the coefficient of thermal expansion of (Yb_{0.2}Y_{0.2}Lu_{0.2}Er_{0.2}Ho_{0.2})₂Si₂O₇ and the elements decreased by 15.51%. This indicates that the thermal conductivity of (Yb_{0.2}Y_{0.2}Lu_{0.2}Er_{0.2}Ho_{0.2})₂Si₂O₇ and (Yb_{0.2}Y_{0.2}Lu_{0.2}Er_{0.2}Ho_{0.2})₂Si₂O₇ and (Yb_{0.2}Y_{0.2}Lu_{0.2}Er_{0.2}Ho_{0.2})₂Si₂O₇ and (Yb_{0.2}Y_{0.2}Lu_{0.2}Er_{0.2}Ho_{0.2})₂Si₂O₇ and (Yb_{0.2}Y_{0.2}Lu_{0.2}Er_{0.2}Ho_{0.2})₂Si₂O₇ and (Yb_{0.2}Y_{0.2}Lu_{0.2}Er_{0.2}Ho_{0.2})₂Si₂O₇ and expansion decrease and remain close to that of the substrate CMC. After holding at 1200 and 1300 °C for 10, 30 and 50 h, Yb₂Si₂O₇, (Yb_{0.2}Y_{0.2}Su_{0.2}SF_{0.25}Si₂O₇, and (Yb_{0.2}Y_{0.2}Lu_{0.2}Er_{0.2}Si₂O₇ and (Yb_{0.2}Y_{0.2}Lu_{0.2}Er_{0.2}Ho_{0.2})₂Si₂O₇ all exhibit good high temperature phase stability, their coefficients of thermal expansion decrease and remain close to that of the substrate CMC, and their elastic modulus is increased with the increase in the holding time. Key words: high-entropy bisilicate; thermal environ

Corresponding author: Ding Kunying, Ph. D., Professor, Tianjin Key Laboratory of Civil Aircraft Airworthiness and Maintenance, Civil Aviation University of China, Tianjin 300300, P. R. China, E-mail: dingkunying@126.com