300M 钢基体上高速火焰喷涂 WC-17Co 和 WC-10Co4Cr 涂层的疲劳和抗盐雾腐蚀性能

周克崧,邓春明,刘 敏,宋进兵,邓畅光

(广州有色金属研究院, 广东 广州 510651)

摘 要:以涂层在飞机起落架的应用作为研究背景,在 300M 超高强钢基体上对替代电镀硬铬的两种高速火焰喷涂 WC-17Co 和 WC-10Co4Cr 涂层的疲劳和抗中性盐雾腐蚀性能进行了研究。结果表明,两种有涂层的 300M 钢的疲劳寿命均高于无涂层 300M 钢,如考虑扣除涂层承受载荷,有涂层的 300M 钢与无涂层 300M 钢的疲劳寿命相当。喷砂镶嵌在基体表面的刚玉砂粒导致有 WC-10Co4Cr 涂层的疲劳寿命低于有 WC-17Co 涂层的 300M 钢。两种涂层对基体的疲劳性能都没有负面影响;两种涂层都提高了 300M 钢的抗盐雾腐蚀性能,但有 WC-10Co4Cr 涂层的 300M 钢表现出更好的抗盐 雾腐蚀性能。综合比较两种涂层的性能,高速火焰喷涂 WC-10Co4Cr 涂层是更好的电镀铬替代涂层。 关键词: 300M 钢;高速火焰喷涂; WC-17Co 涂层; WC-10Co4Cr 涂层;疲劳;盐雾腐蚀

中图法分类号: TG115.5⁺7 文献标识码: A 文章编号: 1002-185X(2009)04-0671-06

飞机起落架是飞机的关键部件,在飞机中起承重、 缓冲和滑跑滑行制动和操纵等作用。目前现代飞机常 用的支架式或摇臂式起落架,经过几代改进,其安全 性能有了大幅度的提高,但在使用过程中,这些起落 架会出现较严重的磨损[1]。起落架用材——低合金超 高强钢耐腐蚀性能差,在海洋性盐雾条件下很容易发 生腐蚀。因此需要对其进行表面处理,以提高飞机起 落架的耐磨耐蚀性能。飞机起落架的表面处理主要采 用电镀硬铬,即六价铬酸盐在阴极沉积形成硬度较高 的耐磨耐蚀涂层。其特点是工艺简单,成本低。然而, 在电镀过程中会排放出大量的含有 Cr⁶⁺致癌物质,导 致严重的环境污染。除此之外,电镀过程中还会导致 基体产生氢脆,使基体的力学性能显著降低^[2]。开发 新型替代涂层一直受到各国政府的重视,如美国和澳 大利亚专门成立了研究替代电镀硬铬的部门,以推动 相关的研究^[3~5]。

目前,人们已采用 PVD、CVD 和热喷涂等工艺制 备新型环保涂层以替代电镀硬铬^[6,7]。热喷涂由于可以 在大面积基体上快速地沉积硬度较高的耐磨耐蚀涂层 而被认为是最有可能替代电镀硬铬的工艺。

高速火焰喷涂(HVAF)是热喷涂工艺中的一种 重要方法。其原理是高压燃气(通常是丙烷、丙烯、 煤油或者氢气等)与高压氧气或者高压空气等助燃剂 在燃烧室或特殊的喷嘴中燃烧,所产生的高温高速焰 流将注入其中的粉末材料熔化或软化,并喷射至基体 表面而形成涂层。高速火焰喷涂由于适中的焰流温度 (1300~3000 ℃)和较高的焰流速度(可高达 2000 m/s),实现了热能和动能的良好结合,特别适合制备 WC-17Co、WC-10Co4Cr 等金属陶瓷涂层,所制备的 涂层致密,孔隙率小于 1%;涂层与基体的结合为机械 和半冶金结合,结合强度较高,可大于 70 MPa^[8]。

本实验主要研究了高速火焰喷涂 WC-17Co 和WC-10Co4Cr 涂层对 300M 低合金超高强钢疲劳性能的影响,并对有涂层的 300M 钢的抗中性盐雾腐蚀进行了研究,为替代电镀硬铬涂层提供理论支持。

1 实验方法

将 300M 低合金钢加工成漏斗形试样,具体尺寸 见文献[9]。涂层材料分别为WC-17Co和WC-10Co4Cr 粉末,其粒度范围均为 5~30 μm。将试样进行超声除 油,采用刚玉砂进行喷砂,然后再进行超声处理,以 除掉基体表面镶嵌的砂粒。采用 Unique Coat 高速火 焰喷涂系统进行喷涂。喷涂工艺参数为:主燃气压力 0.54 MPa,次燃气压力 0.40 MPa,空气压力 0.59 MPa, 喷距 0.15 m,涂层厚度 150 μm 左右。将涂层用金刚 石砂带抛光至 Ra 0.2 μm 以下,以进行疲劳和盐雾腐

收到初稿日期: 2008-08-31; 收到修改稿日期: 2009-03-18

作者简介:周克崧,男,1941年生,教授级高工,广州有色金属研究院材料表面所,广东 广州 510651,电话: 020-37238503, E-mail: kszhou2004@163.com

蚀性能测试,抛光后涂层的厚度为75μm。

将抛光处理后的样品在 AMSLER-5100 型疲劳试 验机上进行疲劳测试,在室温空气环境下轴向加载, 应力比 *R*=-1,加载频率为 133 Hz,指定疲劳无限寿 命为 10⁷周次。按照 HB5287-96 标准,采用升降法四 级测试疲劳试样的疲劳极限。采用成组法测量试样过 载下的疲劳寿命,疲劳过载分别为 840,930,1020 和 1200 MPa。采用 JL SM5910 扫描电镜对疲劳试样 的断口进行分析。

将尺寸为 Ø80 mm×8 mm 的 300M 钢两端面涂层 后四周用环氧胶封住,采用 MC-952C 型盐雾试验机测 试试样的抗中性盐雾腐蚀性能。电化学测量采用 CHI660B 恒电位仪进行动电位极化曲线测试。采用标 准三电极体系,参比电极为饱和甘汞电极(SCE),辅助 电极为铂电极,工作电极为 300M 钢以及有涂层的 300M 钢试样,电解质为 3.5%的 NaCl 中性溶液,温度 为 25 ℃。电化学测试试样的工作面面积为 10 mm×10 mm。除工作面(涂层)外,其余各面均用环氧树脂封 住。电化学测试前工作电极均在 25 ℃、3.5%的 NaCl 中性溶液中浸泡 0.5 h。动电位扫描范围为–1200~0 mV (相对于饱和甘汞电极),扫描速率为 1 mV/s,电位为 相对于饱和甘汞电极电位。采用 JL SM5910 扫描电镜 对盐雾腐蚀试样的剖面进行分析。

2 结果与讨论

2.1 疲劳极限

图 1 为 300M 钢和分别有 WC-17Co 和 WC-10Co4Cr 涂层的 300M 钢的疲劳极限升降曲线。由图 可知,两种有涂层的 300M 钢的疲劳极限升降曲线非常相近,均略高于 300M 钢。表 1 为按照 HB5287-96 计算得到的 3 种试样的标准差、变异系数 C_v和不同存 活率下的疲劳极限。3 种试样的标准差和变异系数都 非常接近,但 300M 钢的疲劳极限都低于有涂层 300M

图 1 300M 钢和有涂层 300M 钢的疲劳升降曲线

表 1	300M 钢和有涂层 300M 钢的标准差、	
	在不同存活率下的疲劳极限	

Table 1 Fatigue limits, standard variances and variation coefficients for bare and coated 300M steel at different survivabilities

		Fatig	Standard				
Coat	P=	P=	P=	P=	P=	variance	$C_{ m v}$
	50%	90%	95%	99%	99.9%	variance	
— (Substrate)	726	703	697	685	671	15.1	0.021
WC-17Co	753	730	724	712	698	15.1	0.020
WC-10Co4Cr	755	732	726	714	700	15.1	0.020

钢。疲劳过程中涂层也承受载荷,有涂层的 300M 钢 的承载面积约为原基体的 1.05 倍。根据表 1 的结 果, 不同存活率下有涂层 300M 钢的疲劳极限为 300M 钢 的 1.04 倍左右。如考虑涂层的弹性模量(160 GPa^[10]) 比基体(200 GPa)小,在相同的名义应力下所承受的 实际载荷也小。因此考虑扣除涂层承受载荷,有 WC-17Co 和 WC-10Co4Cr 涂层的 300M 钢与原基体的疲劳 极限基本相同。

2.2 过载下的疲劳寿命

图 2 为 300M 钢和有涂层的 300M 钢过载下的 S-lgN_f单对数曲线疲劳寿命对比。从图 2 中可知,有 WC-17Co和WC-10Co4Cr涂层的 300M 钢两者的疲劳 寿命相近,均明显高于 300M 钢基体的疲劳寿命。同 样考虑到涂层承受应力,因此应扣除涂层面积所承受 的应力才能评价涂层对基体疲劳性能的影响。图 3 为 考虑扣除涂层承受载荷下有涂层的 300M 钢与 300M 钢基体的疲劳寿命比值。由图 3 可知,有 WC-17Co 涂层的 300M 钢在低疲劳载荷下(<840 MPa)使基体 的疲劳寿命提高,而在高载荷下则降低了基体的疲劳 寿命。有 WC-10Co4Cr 涂层的 300M 钢在全部载荷范 围内均使 300M 钢的疲劳寿命略有降低。产生这种现 象的原因是基体中残余压应力和前处理作用有关。一 方面高速火焰喷涂在 300M 钢表面产生较大的残余压

图 2 300M 钢和有涂层的 300M 钢的 S-lgN_f单对数曲线 Fig.2 S-lgN_f curves for bare and coated 300M steel

图 3 有涂层的 300M 钢与 300M 钢基体的疲劳寿命的比值

Fig.3 Ratio of fatigue lives of coated 300M steel to that of bare 300M steel

应力,抑制裂纹的扩展,对提高疲劳寿命有利;另一方面喷砂所造成的损伤和砂粒镶嵌在基体中,导致喷砂处理对基体的疲劳寿命有明显的负面作用^[11]。综合考虑,WC-17Co和WC-10Co4Cr涂层对300M钢基体的疲劳寿命没有明显的负面影响。

2.3 疲劳失效分析

材料的裂纹源主要有3种,分别为材料内部夹杂、 材料表面损伤和材料表面的夹杂。但对于有涂层的 300M 钢除了上述3种典型的疲劳裂纹源外,还多一 种情况,即喷砂镶嵌在基体表面的刚玉颗粒裂纹源。4 种裂纹源的情况如图4所示。表2为3种试样的疲劳 主裂纹源的统计。从表中可知,3种材料的疲劳裂纹

图 4 有涂层的 300M 钢的疲劳断裂裂纹源 Fig.4 Fatigue crack initiation sites for coated 300M steel: (a) inclusion crack initiation site in substrate, (b) inclusion crack initiation site on substrate surface, (c) non-inclusion crack initiation site on substrate surface, and (d) crack initiation site from embedding of blasted alumina grit on the substrate surface

表 2 300M 钢和有涂层的 300M 钢疲劳主裂纹源统计 Table 2 Statistics of main crack initiation sites for bare and coated 300M steel

Cast	\leq	840 MPa	ı	>840 MPa		
Coat	а	b	с	а	b	с
— (Substrate)	88%	6%	6%	68%	16%	16%
WC-10Co4Cr	81.3%	12.5%#	6.2%	66.7%	33.3%#	0
WC-17Co	100%	0	0	100%	0	0

Note: a— inclusion crack initiation site in substrate, b— inclusion crack initiation site on substrate surface, c— non-inclusion crack initiation site on substrate surface, and #— crack initiation site from embedding of blasted alumina grit on the substrate surface

源主要为基体内部的氧化物夹杂,特别是有 WC-17Co 涂层的 300M 钢的裂纹源全部为内部夹杂。而原基体 和有 WC-10Co4Cr 的涂层 300M 钢则有一定比例的裂 纹源自 300M 钢表面的夹杂(喷砂或者基体表面夹杂) 或表面损伤。

疲劳主裂纹源是上述几种裂纹源竞争的结果。一 般来说,在相同质量的材料内获得的最大夹杂物尺寸 相近,因此在相同表面条件下内部夹杂作为疲劳裂纹 源的概率相近^[12]。当表面夹杂或者损伤成为表面裂纹 源时,则可能使材料的疲劳寿命显著降低,因此除了 对材料表面状况要仔细检查外,在实际加工中要尽量 减少加工对材料所造成的损伤。

对于有 WC-10Co4Cr 涂层的 300M 钢,由于喷砂 镶嵌在 300M 钢表面的刚玉颗粒疲劳主裂纹源与喷砂 有关,从而造成基体表面的损伤。同时,这也可以解 释在过载下有 WC-10Co4Cr 涂层的 300M 钢比有 WC-17Co 涂层的 300M 钢的疲劳寿命低的原因。由于刚玉 颗粒在基体表面镶嵌而导致有 WC-10Co4Cr 涂层的 300M 钢的疲劳寿命显著降低,因此数据统计得到有 WC-10Co4Cr 涂层的 300M 钢的疲劳寿命低。

图 5 为两种有涂层疲劳试样的界面。由图 5 中可 以发现,有 WC-17Co 涂层的疲劳试样的界面清洁, 在界面上观察不到明显的氧化铝砂粒;而有 WC-10Co4Cr 涂层的疲劳试样界面中发现存在较多的氧化 铝砂粒。基体表面的夹杂可能与喷砂的工艺控制有 关。由于实验开始没有意识到喷砂对疲劳性能影响的 重要性,有 WC-17Co 涂层的疲劳试样喷砂是采用新 刚玉颗粒;而有 WC-10Co4Cr 涂层疲劳试样是在刚玉 砂经多次使用,发生破碎后对基体表面进行喷砂的, 因此细小的氧化铝颗粒镶嵌在基体表面。虽然喷砂后 经过超声处理,也不能将有 WC-10Co4Cr 涂层的疲劳 试样界面的砂粒除掉。因此喷砂工艺的控制是非常重 要的。

表 3 为 3 种过载下两种有 WC 涂层的 300M 钢的 平均疲劳寿命对比。由表可知,氧化铝夹杂作为裂纹 源的平均疲劳寿命明显低于其他情况的疲劳寿命。如 不统计喷砂镶嵌的刚玉颗粒作为主裂纹源的疲劳寿 命,则在 840 和 1020 MPa 应力下有 WC-17Co 涂层的 300M 钢比有 WC-17Co4Cr 涂层的平均疲劳寿命略高; 而在 930 MPa 应力下前者的平均疲劳寿命略低。与两 种有涂层 300M 钢在过载下疲劳寿命不同,两种有 WC 涂层的 300M 钢的疲劳极限几乎相同。这是由于升降 法获得材料的疲劳极限时只需统计疲劳应力,在数据 统计和处理中根本没有涉及材料的疲劳寿命。

	表 3	有 WC 涂层的	300M 钢的斗	′ 均寿命对比	
Table 3	Comparison	s of average fatig	gue lives for	HVAF WC coate	d 300M steel
W	C-17Co coatin	a + 300Msteel		$WC_{-10}C_{0}4Cr$ co	ating +300M

Load -	WC-17Co coating + 300Msteel			WC-10Co4Cr coating +300M steel			
	840 MPa	930 MPa	1020 MPa	840 MPa	930 MPa	1020 MPa	
А	2 794 300	878 380	269 466	2 026 133	1 139 177	156 250	
В	—	_		2 432 360	1 336 700	185 833	
С				623 200	44 785	126 666	

Note: A—— stands for average fatigue lives; B—— for average fatigue lives statistics from inclusion in 300M substrate as crack initiator; C—— for average fatigue lives statistics from alumina inclusion as crack initiator in 300M substrate.

图 6 为疲劳裂纹在 WC 涂层中的扩展照片,图中 箭头所示为裂纹扩展路径。裂纹首先在 WC 涂层的表 面形成,然后往涂层内部弯曲扩展,并在界面上裂纹 发生偏斜,转向沿界面扩展或在界面上往涂层方向发 生偏斜,从而导致涂层与基体发生分离,形成无支撑 涂层。WC 涂层中的裂纹在界面处偏转向界面方向, 对基体的疲劳寿命没有影响。

2.4 抗腐蚀性能

2.4.1 抗盐雾腐蚀行为

图 7 为两种 HVAF WC 涂层处理 300M 钢及基体 在不同盐雾腐蚀时间的腐蚀评级。盐雾腐蚀 24 h, 300M 钢即发生明显的腐蚀,说明了 300M 钢的抗化学 腐蚀能力差。涂层处理后 300M 钢的抗盐雾腐蚀能力 均明显提高。涂层的抗腐蚀能力顺序依次为: WC-10Co4Cr 涂层 + 300M 钢>WC-17Co 涂层 + 300M 钢>300M 钢。

2.4.2 盐雾腐蚀机制分析

图 8 为两种有 WC 涂层的 300M 钢及基体在中性 NaCl 溶液中的电化学极化曲线。图中表明,基体的腐

图 7 300M 钢和有涂层 300M 钢的盐雾腐蚀评级

Fig.7 Ratings of salt spray corrosion for bare and coated 300M steel

蚀电位最低,为-626 mV。经 WC-17Co 和 WC-10Co4Cr 涂层处理后,腐蚀电位分别升到-588 和-444 mV。而 WC-Co 中引入少量的铬可提高涂层的抗腐蚀能力。通 过对 Tafel 区拟合可知,涂层的腐蚀电流密度 *i*_{WC-10Co4Cr} <*i*_{WC-17Co},腐蚀电流密度和腐蚀速度成正比, 因此,有 WC-10Co4Cr 涂层的材料较有 WC-17Co 涂 层的 300M 钢抗电化学腐蚀能力强。

图 9 为 400 h 盐雾腐蚀后断面的 SEM 照片。从图中可以发现,有 WC-17Co 涂层的 300M 钢中的基体都有明显的腐蚀,而有 WC-10Co4Cr 涂层的 300M 钢中的基体仍保持良好状态。说明在 400 h 盐雾腐蚀下,前者的腐蚀介质即已扩散到界面,导致基体腐蚀。当腐蚀介质通过粘结相扩散到界面时,由于基体的腐蚀电位更低,基体优先腐蚀。WC-10Co4Cr 涂层比WC-17Co 涂层的抗化学腐蚀能力强,这是由于引入的Cr 形成了 Cr₂O₃陶瓷钝化相,提高了粘结相的电化学腐蚀电位,延缓了腐蚀介质向基体扩散^[13]。

图 9 涂层经 400 h 盐雾腐蚀后剖面的 SEM 照片

Fig.9 Cross-sectional SEM image after salt spray corrosion for 400 h: (a) WC-10Co4Cr coating and (b) WC-17Co coating

3 结 论

1) 有 WC-17Co 和 WC-10Co4Cr 涂层的 300M 钢的疲劳极限比 300M 钢略有升高。如考虑涂层承受载

荷和弹性模量的影响,则两种涂层对 300M 钢的疲劳 极限没有不良影响,涂层对基体的疲劳寿命也没有明 显的负面影响。

2) 喷砂镶嵌在 300M 钢表面的氧化铝颗粒成为主 疲劳裂纹源,导致有 WC-10Co4Cr 涂层的 300M 钢比 有 WC-17Co 涂层的 300M 钢的统计疲劳寿命低。

3) WC 涂层明显提高了 300M 钢抗中性盐雾腐蚀 性能。而有 WC-10Co4Cr 涂层的 300M 钢表现出更好 的抗盐雾腐蚀性能。

4) 综合比较两种 WC 涂层的疲劳和抗中性盐雾 腐蚀性能,高速火焰喷涂 WC-10Co4Cr 涂层是更好的 电镀硬铬替代材料。

参考文献 References

- [1] Wang Xiaoping(王晓平). Aviation Engineerging & Mainienance(航空工程与维修)[J], 2001, 4:15
- [2] Nascimento M P, Souzab R C, Pigatin W L et al. International Journal of Fatigue[J], 2001, 23(7): 607
- [3] Sartwell B D, Natishan P M, Singer I L et al. Proceedings of AESF Aerospace/Airline Plating & Metal Finishing Forum[C].
 San Antonio: The American Electroplaters and Surface Finishers Society, 1998: 341
- [4] Sartwell B D, Bretz P E. Advanced Materials Processes[J], 1999, 156(2): 25
- [5] Wasserman Ch, Boecking R, Gufstasson S. Proceedings of the International Thermal Spray Conference[C]. Ohio, Materials Park: ASM International, 2001: 69
- [6] Yi Ming. Anti-Corrosion[J], 2003(9): 45
- [7] Zhou Kesong(周克崧). The Chinese Journal of Nonferrous Metals(中国有色金属学报)[J], 2004, 14(1): 182
- [8] Erning U, Nestler M C, Tauchert G et al. Proceedings of UTSC'99[C]. Dusseldorf: German Welding Society, 1999: 462
- [9] Deng Chunming(邓春明), Zhou Kesong(周克崧) et al. Mechanical Engineering Materials(机械工程材料)[J], 2006, 30(9):44
- [10] Qiao Yunfei. Mechanical and Tribological Properties of Thermally Sprayed WC-17Co Coatings[D]. New Jersey: Steven Institute of Technology, 2001
- [11] Padilla K, Valasquez A, Berrios A J A et al. Surface and Coating Technology[J], 2002, 150(2~3): 151
- [12] Murakami Y, Usuki H. Transaction of Japan Society of Mechanical Engineering[J], 1989, A 55(510): 213
- [13] Deng Chunming(邓春明), Zhou Kesong(周克崧) et al. Development and Application of Materials(材料开发与应用)[J], 2007, 22(3): 33

Characterizations of Fatigue and Salt Spray Corrosion Resistance of HVAF Sprayed WC-17Co and WC-10Co4Cr Coatings on the Substrate of 300M Steel

Zhou Kesong, Deng Chunming, Liu Min, Song Jinbing, Deng Changguang

(Guangzhou Research Institute of Nonferrous Metals, Guangzhou 510651, China)

Abstract: The fatigue and neutral salt spray corrosion resistance for bare and coated high strength steel were investigated in this paper. The results indicated that WC-17Co and WC-10Co4Cr coatings led to significant increase of fatigue resistance compared with the substrate. There were also comparably similar cycles to failure for the bare and the coated substrates even though the stress which was WC-based coatings shouldered was taken into account. The lower cycles to the failure for WC-10Co4Cr coated substrate than those for WC-17Co coated substrate were attributed to embeding of blasted alumina grit on the substrate surface, which resulted in the great decrease of the cycles to failure. Both WC coatings produced no negative effect on the fatigue performance of 300M steel. The neutral salt spray corrosion resistance for 300M steel substrate was significantly improved after coating process, especially for WC-10Co4Cr coating. As a conclusion, HVAF WC-10Co4Cr coated high strength steel exhibited better performances in both fatigue and neutral salt spray corrosion resistance than that of the substrate, and WC-10Co4Cr coating was a better candidate to chrome plating.

Key words: high strength steel; high velocity air fuel; WC-17Co coating; WC-10Co4Cr coating; fatigue; neutral salt spray corrosion

Biography: Zhou Kesong, Professor, The Centre of Materials and Surface Engineering, Guangzhou Research Institute of Nonferrous Metals, Guangzhou 510651, P. R. China, Tel: 0086-20-37238503, E-mail: kszhou2004@163.com