Magnetic Properties of Mix-Bonded La$_{0.8}$Ce$_{0.2}$Fe$_{11.7-x}$Mn$_x$Si$_{1.8}$H$_{1.8}$ Magnetic Refrigerants

Cheng Juan1, Liu Cuilan1, Zhang Guangrui1, Sun Naikun2, Zhang Yingde1, Jin Peiyu1, Huang Jiaohong1

1State Key Laboratory of Baiyunobo Rare Earth Resource Researches and Comprehensive Utilization, Baotou Research Institute of Rare Earths, Baotou 014030, China; 2School of Science, Shenyang Ligong University, Shenyang 110159, China

Abstract: La$_{0.8}$Ce$_{0.2}$Fe$_{11.7-x}$Mn$_x$Si$_{1.8}$ master alloys were prepared by medium frequency induction furnace, then annealed, saturatedly hydrogenated, and finally crushed into powders. The multiple components of La$_{0.8}$Ce$_{0.2}$Fe$_{11.7-x}$Mn$_x$Si$_{1.8}$ (x=0.23, 0.26, 0.29, 0.32, wt%) powders with the Curie temperature (T_C) interval of 5 K were mix-bonded by epoxy resin to extend the full width at half maximum of magnetic entropy of alloy. The magnetic properties of the mix-bonded specimens were measured by VersaLab and adiabatic temperature change direct test device. The maximal magnetic entropy change of the mix-bonded specimens is decreased, whereas the full width at half maximum of magnetic entropy and the relative cooling power are increased, compared with those of the single-component-bonded specimens. The maximal relative cooling power is 139.2 J/kg for the four-component-bonded specimen.

Key words: magnetic materials; magnetocaloric effect; relative cooling power; rare earths

As La(Fe, Si)$_{13}$ materials have characteristics of large magnetocaloric effect, continuously adjustable Curie temperature (T_C), and low cost, they are regarded as one of the most promising magnetocaloric materials for room-temperature refrigeration$^{[1-3]}$. However, T_C of La(Fe, Si)$_{13}$ parent alloys is too low for room temperature magnetic refrigeration$^{[9]}$. Although T_C of La(Fe, Si)$_{13}$ materials can increase to room temperature by partial substitution of Co for Fe, their magnetocaloric effect decreases sharply and the magnetic phase transition changes from the first-order to second-order$^{[4,5]}$. It is found that after hydrogen absorption, the T_C of La(Fe, Si)$_{13}$ materials is increased and the large magnetocaloric effect of first-order transition remains$^{[5-10]}$. Unfortunately, the application of La(Fe, Si)$_{13}$H$_3$ materials in magnetic refrigerator is restricted due to their poor mechanical properties and narrow full width at half maximum of magnetic entropy (ΔT). In order to improve the mechanical properties, Zhang et al$^{[11]}$ prepared the epoxy resin-bonded LaFe$_{11.7}$Si$_{1.8}$C$_{0.3}$H$_2$$_3$ material and found that the maximal compressive strength of 162 MPa is achieved when the content of epoxy resin is 3wt%. Pan et al$^{[12]}$ bonded the La(Fe, Si)$_{13}$ hydrides with sodium silicate. Besides, the low melting point metals, such as Sn$^{[13]}$, In$^{[14,15]}$, Pb-Bi-Cd$^{[16]}$, and Bi$_{13}$Sn$_{48}$In$_{58}$, have been widely used as the metal adhesive to bond the La(Fe, Si)$_{13}$ hydrides. However, the broadening of the ΔT of La(Fe, Si)$_{13}$ hydrides is rarely studied.

In this research, various La$_{0.8}$Ce$_{0.2}$Fe$_{11.7-x}$Mn$_x$Si$_{1.8}$ alloys of the first-order phase transition with the Curie temperature interval of 5 K were mix-bonded by epoxy resin to expand the ΔT. The magnetic properties of the composites were investigated.

1 Experiment

The industrially pure raw materials (99.5wt% La, 99.5wt% Ce, 99wt% Fe, 99.7wt% Mn, 99.9wt% Si) were cast to prepare the La$_{0.8}$Ce$_{0.2}$Fe$_{11.7-x}$Mn$_x$Si$_{1.8}$ master alloys by medium frequency induction furnace. Afterwards, the alloys were annealed at 1363 K for 144 h in Ar atmosphere. The bulk alloys were crushed into irregular particles and hydrogenated in a hydrogen atmosphere of 0.13 MPa at 593 K for 5 h until...
they were hydrogen-saturated. Then the La_{x}Ce_{3y}Fe_{11-7x-y}MnSi_{1}H_{1.5} alloys were obtained and subsequently ground into powders with particle size < 0.15 mm. All the powders consisting of different components were bonded by 1.8 wt% epoxy resin, then pressed into cylinders at the pressure of 557 MPa, and finally annealed at 175 °C for 45 min. The La_{x}Ce_{3y}Fe_{11-7x-y}MnSi_{1}H_{1.5} alloys with Mn contents of x = 0.23, 0.26, 0.29, and 0.32 (wt%) are denoted as specimen A, B, C, and D, respectively. The composition of mix-bonded La_{x}Ce_{3y}Fe_{11-7x-y}MnSi_{1}H_{1.5} alloys is listed in Table 1.

The phase components of specimens were determined by X-ray diffraction (XRD). The magnetic properties were measured by VersaLab with VSM option, and the magnetic entropy changes were calculated by Maxwell relation. The adiabatic temperature changes were tested by the home-made adiabatic temperature change direct test device. The compressive strength was tested by the electronic universal testing machine (WDW3200).

2 Results and Discussion

Fig. 1 shows the XRD patterns of La_{x}Ce_{3y}Fe_{11-7x-y}MnSi_{1}H_{1.5} alloys with x = 0.23, 0.26, 0.29, and 0.32. It can be seen that all the specimens have the main cubic phase of NaZn_{13} structure, and a small amount of impurity phase α-Fe can be detected.

Fig. 2 shows the relationship between the magnetization M and temperature T of various La_{x}Ce_{3y}Fe_{11-7x-y}MnSi_{1}H_{1.5} alloys at the magnetic field of 0.05 T in the warming process. The \(T_c \) is obtained by the valley bottom values of dM/dT-T curves. It is known that the \(T_c \) of La(FeSi_{13})_{x} alloys can be reduced through the partial substitution of Mn for Fe or Ce for La\(^{17}\), so the \(T_c \) of La_{x}Ce_{3y}Fe_{11-7x-y}MnSi_{1}H_{1.5} alloys is relatively lower than that of La(Fe, Si)\(_{13}\) alloy. The \(T_c \) interval of specimen A, B, C, and D is 5 K, as listed in Table 2. The specimen M_{ABC} and M_{BCD} both show the distinctive magnetic transitions. In order to further widen the half peak width of the

![Fig. 1 XRD patterns of specimen A, B, C, and D at room temperature](image1)

![Fig. 2 Relationships between magnetization and temperature of different specimens: (a) single-component specimens A–D; (b) two-component-bonded specimens M_{AB}, M_{BC}, and M_{CD}; (c) three-component-bonded specimens M_{ABC} and M_{BCD}; (d) four-component-bonded specimen M_{ABCD}](image2)
magnetization of alloys, specimen A, B, C, and D are mix-bonded, and therefore four magnetic transition points can be observed for the specimen M_{ABCD}, which are basically consistent with those of the single-component-bonded specimen A, B, C, and D.

The area of magnetic phase transition from the ferromagnetic state to the paramagnetic state of the mix-bonded specimens is larger than that of the single-component-bonded specimens, indicating that the maximal magnetic entropy change of the mix-bonded specimens reduces, compared with that of the single-component-bonded specimens. With increasing the components in mix-bonded specimens, the temperature range of magnetic phase transition becomes wider, and the maximum magnetic entropy change is decreased.

Fig. 3 exhibits the magnetization isotherms and the corresponding Arrott plots of different La$_x$Ce$_{1-x}$Fe$_{11.7-x}$Mn$_{x}$Si$_2$H$_{14}$ alloys. According to the magnetization isotherms, there is no obvious change of magnetic moments for the single-component-bonded specimens. The magnetic moment changes more and more slowly with increasing the magnetic field for the two-component-bonded specimens, implying that the field-induced first-order phase transition is weakened and a smaller hysteresis of 2.68 J/kg is achieved, compared with that of the single-component-bonded specimens (3.66 J/kg for specimen C; 5.15 J/kg for specimen D). It is found that the hysteresis caused by the magnetic field cycles can reduce the refrigeration capacity[19]. Hence, the reduction in hysteresis for the mix-bonded specimens is favorable for the magnetic refrigeration. According to the s-d orbit of electrons, the slop of the Arrott plots can be used to describe the types of the magnetic phase transition. If the slop is positive, the phase transition is second-order; if the slop is negative or the inflection point exists, the phase transition is first-order[19].

The Arrott plots in Fig. 3d and 3e have obvious inflection points, indicating that the field-induced first-order phase transition occurs. The inflection point in Fig.3f is not obvious, indicating that the first-order phase transition is weakened in the two-component-bonded specimen M_{CD}.

The maximum magnetic entropy ΔS_m of mix-bonded specimens at the magnetic strength of 0–2 T can be calculated based on the isothermal magnetization curves by Maxwell relation[19], as follows:

$$\Delta S_m(T, H) = \int_0^H \frac{\partial M}{\partial T} \partial H$$

where T is the temperature; H is the magnetic field intensity; M is the magnetization. Table 3 shows the calculation results of maximum magnetic entropy of different La$_x$Ce$_{1-x}$Fe$_{11.7-x}$Mn$_x$Si$_2$H$_{14}$ alloys. The maximal magnetic entropy changes of all the mix-bonded specimens are decreased, compared with those of the single-component-bonded specimens. The average ΔS_m of two-component-bonded

<table>
<thead>
<tr>
<th>Table 2</th>
<th>Magnetic transition temperatures T_c of different LaxCe${1-x}$Fe$_{11.7-x}$Mn$_x$Si2H${14}$ alloy specimens (K)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>273</td>
</tr>
<tr>
<td>B</td>
<td>278</td>
</tr>
<tr>
<td>C</td>
<td>283</td>
</tr>
<tr>
<td>D</td>
<td>288</td>
</tr>
<tr>
<td>M_{AB}</td>
<td>277</td>
</tr>
<tr>
<td>M_{BC}</td>
<td>282</td>
</tr>
<tr>
<td>M_{CD}</td>
<td>287</td>
</tr>
<tr>
<td>M_{ABC}</td>
<td>276</td>
</tr>
<tr>
<td>M_{ABCD}</td>
<td>283</td>
</tr>
<tr>
<td>M_{ABCD}</td>
<td>272</td>
</tr>
</tbody>
</table>

Fig.3 Isothermal magnetization curves at magnetic strength of 0–2 T (a–c) and Arrott plots (d–f) of specimen C (a, d), specimen D (b, e), and specimen M_{CD} (c, f)
specimens, three-component-bonded specimens, and four-component-bonded specimens is decreased by about 6.7%, 18.6%, and 35.2%, compared with that of the corresponding single-component-bonded specimens, respectively. The decreased ΔS_m of the mix-bonded specimens is caused by the weakening of the magnetic transformation.

In order to further study the refrigeration capacity of the materials, the relative cooling power (RCP) is calculated by Eq.(2), as follows:

$$\text{RCP} = -\Delta S_m/T$$

(2)

where $\Delta T=T_f-T_i$ (the values of T_i and T_f are listed in Table 3). Although the ΔS_m of the mix-bonded specimens decreases, compared with that of the single-component-bonded specimens, RCP of the mix-bonded specimens is higher than that of all the single-component-bonded specimens as a result of the broadening of ΔT. The average RCP of two-component-bonded, three-component-bonded, and four-component-bonded specimens increases by 10.4%, 24.1%, and 28.3%, compared with that of the single-component-bonded specimens, respectively. In addition, RCP of the four-component-bonded specimen is the largest of 139.20 J kg$^{-1}$.

Fig.4 shows the magnetic entropy changes (ΔS) of different specimens. The ΔT of specimen M_{AB} is 15.0 K, which is smaller than that of the superimposed specimen A and B ($T_{m1}−T_{m2}=17.7$ K). The ΔT of specimen M_{ABCD} is 18.0 K, which is smaller than that of the superimposed specimen B, C, and D ($T_{m1}−T_{m2}=22.0$ K). The ΔT of specimen M_{ABCD} is 24.0 K, which is also smaller than that of the superimposed specimen A, B, C, and D ($T_{m1}−T_{m2}=27.0$ K).

Fig.5 exhibits the temperature dependence of the adiabatic temperature change (ΔT_{ad}) at the magnetic strength of 0–1.5 T. The max ΔT_{ad} is 2.25, 2.33, 2.65, 2.45, 2.24, 2.01, 2.30, 1.67, 1.89, and 1.42 K for specimen A, B, C, D, M_{AB}, M_{BC}, M_{CD}, M_{ABCD}, and M_{ABCD}, respectively. It can be seen that the max ΔT_{ad} of four-component-bonded specimen M_{ABCD} is the smallest, but its cooling temperature zone is the widest, compared with those of other specimens, which is consistent with the magnetic entropy change results.

Fig. 6 shows the compressive stress-strain curve of the four-component-bonded specimen M_{ABCD}. An obvious yield stage before reaching the maximum compressive strength of 157 MPa can be observed, which is applicable for the magnetic refrigerator as the magnetic refrigerant.
3 Conclusions

1) The first-order magnetic transformation in the mix-bonded La_{x/2}Ce_{x/2}Fe_{1-x/3}Mn_{x/3}Si_{1/3}H_{1/3} (x=0.23, 0.26, 0.29, 0.32) alloys is weakened, the hysteresis and magnetocaloric effect decrease, and the cooling temperature range is widened, compared with those of the single-component-bonded alloys.

2) The cooling temperature range of the four-component-bonded specimen is the widest, and its relative cooling power is optimal of 139.2 J kg\(^{-1}\) among all the mix-bonded specimens.

3) The mix-bonding preparation of La_{x/2}Ce_{x/2}Fe_{1-x/3}Mn_{x/3}Si_{1/3}H_{1/3} alloy is an effective way to widen the cooling temperature range and to increase the relative cooling power.

References

复合粘结 $\text{La}_{0.8}\text{Ce}_{0.2}\text{Fe}_{11.7-x}\text{Mn}_x\text{Si}_{1.3}\text{H}_{1.8}$ 磁工质的磁性能

程娟，女，1984年生，硕士，高级工程师，包头稀土研究院白云鄂博稀土资源研究与综合利用国家重点实验室，内蒙古 包头 014030

1 摘要：采用中频感应炉制备 $\text{La}_{0.8}\text{Ce}_{0.2}\text{Fe}_{11.7-x}\text{Mn}_x\text{Si}_{1.3}\text{H}_{1.8}$ 合金并退火，将合金饱和氢化后破碎成粉末。通过环氧树脂粘结，将居里温度 T_C 间隔为 5 K 的多种 $\text{La}_{0.8}\text{Ce}_{0.2}\text{Fe}_{11.7-x}\text{Mn}_x\text{Si}_{1.3}\text{H}_{1.8}$ 合金粉末进行混合粘结，提高合金的磁熵变宽。用 VersaLab 和绝热温变直接测量仪测试粘结样品的磁性能。结果表明，与单一成分粘结样品相比，混合粘结样品的最大等温磁熵变有所降低，磁熵变宽以及相对制冷能力有所提高。含 4 种成分的混合粘结样品的相对制冷能力可以达到 139.2 J/kg。

2 关键词：磁性材料；磁热效应；相对制冷能力；稀土