DOI: 10.12442/j.issn.1002-185X.20220924

准 β 热处理工艺对 TC4-DT 钛合金组织 和拉伸性能的影响

马 鑫,孙前江,文 超,徐 浩,戚飞勇

(南昌航空大学 航空制造工程学院, 江西 南昌 330063)

摘 要:研究了不同准β 热处理工艺对 TC4-DT 钛合金显微组织和力学性能的影响,并对显微组织、力学性能断 口形貌进行对比分析。结果表明,随着固溶温度从 T_β+10 ℃升高到 T_β+25 ℃,合金初生片状 α 相长宽比变大, 次生 α 相含量升高,塑性下降,抗拉强度升高。冷却速率的下降对初生片状 α 相有粗化效果,降低初生片状 α 相 的长宽比,对应的抗拉强度升高,塑性降低。随固溶时间的延长,初生片状 α 相宽度变大,长宽比下降,次生片 状 α 相长宽比变大。TC4-DT 钛合金拉伸断口存在大小不一的韧窝,随固溶温度的升高和时效时间的延长,试样 拉伸断口韧窝的尺寸均有不同程度的变大,同时出现了少量的撕裂棱,试样的断裂机制以韧性断裂为主并伴有准 解理断裂。

关键词: TC4-DT 钛合金; 热处理工艺; 显微组织; 拉伸性能 中图法分类号: TG146.23 文献标识码: A 文章编号: 1002-185X(2023)12-4260-08

钛及钛合金具有密度低、比强度高、耐高温、 耐腐蚀、可焊性好等优点,被广泛应用于航空工业。 TC4-DT 钛合金作为典型的中强度高损伤容限型钛 合金在国内外新一代飞机上得到了充分验证和广泛 应用^[1]。该合金已成功应用于欧美的民用客机和军用 飞机的关键承力结构件中,如 F-16 战斗机的水平尾 翼转轴、波音 767 第一号驾驶舱挡风玻璃窗骨架、 波音 777 客机的安定面连接接头等^[2-3],已成为新一 代飞机关键承力构件的主干材料。我国自"十五" 开始研发具有自主知识产权的中等强度损伤容限型 钛合金应用技术^[4],例如将准 β 热处理工艺应用于国 产 TC4- DT 中强高损伤容限型钛合金,使其在具有 良好损伤容限性能的同时仍能保持良好的强度和塑 性水平。

对 TC4-DT 钛合金的显微组织和力学性能的关 系,国内外已进行了大量研究。据相关研究报道^[5-7], 热处理工艺可以调控组织的特征参数而损伤容限型 钛合金综合力学性能与组织特征参数之间联系密 切,如原片状α相含量、片状α相厚度及长宽比等 均对合金力学性能有着重要的影响。Zhang 等^[8]探讨 了固溶参数的变化对于合金组织的影响,Tiley 等^[9] 探讨了片状厚度等微观参数对合金室温强度的影 响。田喜明^[10]等研究了锻造变形量对锻件组织和力 学性能的影响,经综合分析确定 TC4-DT 钛合金合理 的锻造变形量为 35%左右。但要获得良好、均匀的 片状组织, 锻造变形后的热处理工艺也非常重要。 通过 β 热处理工艺,可以提高钛合金的损伤容限性 能和高温蠕变性能,所以在航空发动机盘件以及飞 机重要承力结构件中都得到了应用。但是,采用这种 普通的β热处理工艺,得到的片层组织粗大,塑性和 疲劳强度偏低,不能达到综合高性能水平[11]。为此, 提出了采用新型"钛合金准β热处理工艺"。2004 年,朱知寿等人^[12]发明了一种获得片状组织的钛合 金准 β 热处理工艺,该工艺的优点是可以解决片状组 织在保持较高的损伤容限性能的条件下不降低塑性 的难题,可提高钛合金片层组织塑性、复杂截面特大 型锻件组织性能均匀性、以及降低普通 B 热处理在实 际生产中的组织控制难度和不合格率等关键技术,从 而满足飞机结构综合高性能的要求。然而,关于准 β 热处理工艺对 TC4-DT 钛合金组织性能影响方面的 研究却鲜见报道。因此深入研究准β热处理工艺参 数对提升钛合金性能具有重要的参考意义。

本研究以 TC4-DT 钛合金为研究对象,研究不同准 β 热处理工艺对(α + β)两相区锻造后的 TC4-DT

收稿日期: 2022-12-25

基金项目:国家自然科学基金(51965043)

作者简介: 马 鑫, 男, 1996 年生, 硕士生, 南昌航空大学航空制造工程学院, 江西 南昌 330063, E-mail: 1210061121@qq.com

钛合金显微组织形貌和尺寸、断口形貌以及拉伸力 学性能的影响,并结合棒材实际测试的力学性能, 分析断口形貌与塑性之间的关系,实现其网篮组织 特征参数与其力学性能的合理匹配,以期获得使合 金强度和塑性良好匹配的准 β 热处理工艺,为 TC4-DT 钛合金准 β 热处理的显微组织及性能调控提供 理论参考。

1 实 验

实验原材料为江西景航航空锻铸有限公司提供 的 $Φ210 \text{ mm} \times 301 \text{ mm} \text{ TC4-DT}$ 钛合金棒材,采用金 相法测得其相变点为 980 ℃。棒材首先在 (α+β) 两相区进行自由锻造,总变形量为 30%。棒材经过 两相区自由锻后显微组织如图 1 所示。由图中可知, 锻后显微组织为 (α+β) 相组成的等轴组织,其中 等轴 α 相平均直径在 2 µm 左右,组织分布较均匀。

热处理试验在控温精度为±3 ℃的箱式电阻炉 中进行,具体热处理工艺如表 1 所示。固溶温度分 别为 T_{β} +10 ℃、 T_{β} +25 ℃,保温时间分别为 30、40 和 60 min,时效温度均采用 850 ℃,保温时间分别 为 60 和 120 min。

在准β热处理完成的 TC4-DT 钛合金锻件上切

图 1 TC4-DT 钛合金锻后显微组织

Fig.1 Original microstructure of TC4-DT alloy after forging

表 1 TC4-DT 合金锻件的热处理工艺

 Table 1
 Heat treatment processes of TC4-DT alloy

forgings

	0 0			
Process No.	Schedule			
HT1	990 °C/60 min, AC+850 °C/60 min, AC			
HT2	990 °C/60 min, AC+850 °C/60 min, FC			
HT3	1005 °C/60 min, AC+850 °C/60 min, AC			
HT4	990 °C/60 min, AC+850 °C/120 min, AC			
HT5	1005 °C/30 min, AC+850 °C/120 min, AC			
HT6	1005 °C/40 min, AC+850 °C/120 min, AC			
HT7	1005 °C/60 min, AC+850 °C/120 min, AC			

取金相试样和拉伸试样以进行显微组织和室温拉伸 力学性能分析。采用 XJP-9A 金相显微镜和 TESCAN 型场发射扫描电子显微镜对合金的显微组织、断口 形貌进行观察,并利用 Image-Pro Plus6.0 软件对 TC4-DT 钛合金显微组织特征参数进行分析。金相 腐蚀剂的 HF、HNO3 和 H₂O 配比为 1:3:7。TC4-DT 合金拉伸试样按《金属室温拉伸实验方法》 (GB/T228-2002)制作,具体尺寸如图 2 所示。TC4-DT 钛合金室温拉伸在 WDW-E100D 拉伸机上进行,通 过室温拉伸试验获得抗拉强度、屈服强度、延伸率 和断面收缩率等力学性能指标,室温拉伸试验速率 控制在 0.5 mm/min。不同热处理工艺下的拉伸实验 做 2 组,力学性能取平均值。

2 结果与分析

2.1 热处理制度对显微组织的影响

2.1.1 固溶时间对显微组织的影响

图 3 为 TC4-DT 钛合金在不同固溶时间下的组 织。图 4 为 TC4-DT 钛合金固溶时间对次生 α 相长 宽比的影响。整体来看,显微组织呈现典型的网篮 组织特征。在不同的固溶时间下,合金的显微组织 并没有太大的变化,主要都是由大量的初生片状 α 相、次生α相和β转变基体组成。随着固溶时间的 增加,显微组织中的初生片状α相长宽比略微变小, 次生α相含量变大。在HT5热处理工艺条件下,析 出的初生片状 α相较为细长,长宽比较大,约为4.84, 厚度约为 1.36 μm, 次生 α 相的长宽比约为 1.58。在 HT6 热处理工艺条件下, 析出的初生片状 α 相较宽, 长宽比较小,约为4.25,厚度约为2.1 μm,次生 α 相的长宽比约为 1.94。在 HT7 热处理工艺条件下, 析出的初生片状 α 相宽度变化不大,长度变短,长 宽比变小,约为4.13,厚度约为2.5 μm,次生α相 的长宽比约为2.35。这是由于随着固溶时间的延长, 组织中 α 稳定元素逐渐向晶界集中^[13],因此,在随 后的冷却过程中,初生片状 α 相更倾向于从晶界处 形核并向晶粒内部生长,缺少了晶粒内部形核 α相

图 2 TC4-DT 钛合金室温拉伸试样

图 3 不同固溶时间 TC4-DT 钛合金的显微组织

Fig.3 Microstructures of TC4-DT titanium alloys after different heat treatment processes: (a, a₁) HT5, (b, b₁) HT6, and (c, c₁) HT7

图 4 TC4-DT 钛合金固溶时间对次生 α 相长宽比的影响

Fig.4 Effect of solution time of TC4-DT titanium alloy on secondary α phase aspect ratio (length/width ratio of α lamellar phase)

的制约,初生片状 α 相有机会长得更长更宽。 2.1.2 固溶温度对显微组织的的影响

图 5 为固溶温度对 TC4-DT 钛合金显微组织的 影响。由图 5 可以看出,初生 α 相呈网篮编织状, 由初生片状 α 相和 β 相基体组成。对比 HT1 和 HT3 热处理工艺可知初生片状 α 相长宽比由约 2.14 增至 约 3.28,厚度由约 1.43 μ m 增至约 1.62 μ m。这是由 于随着固溶温度的升高,初生片状 α 相含量降低, β 转变组织含量略微升高,在随后的时效过程中析 出的次生 α 相含量增加,同时温度的升高也会引起 原子平均动能增加,更多的晶界原子能够越过能垒 进行扩散,晶粒长大动力学增加,晶粒长大速率增 加^[14],析出的初生片状 a 相长度变长。因此,空冷 条件下初生片状 a 相的长度和宽度均随固溶温度的 升高而产生变化,长宽比随着温度的升高而变大, 次生 a 相含量随着温度的升高而增大。说明加热温 度对其显微组织的影响主要为初生 a 相尺寸和次生 a 相含量。

2.1.3 冷却速率对显微组织的影响

图 6 为不同冷却速率下 TC4-DT 钛合金准 β 热 处理后的显微组织。由图6可知,不同冷却速率下 的显微组织相同,主要由片状 α 相以及转变 β 组成, 不同在于初生片状 α 相的尺寸, 炉冷条件下的初生 片状 α 厚度和长度均较大。对比 HT1 和 HT2 热处 理工艺条件下的显微组织可知, 空冷后初生片状 α 相平均厚度约为 1.42 µm, 长宽比约为 5.14。炉冷 后初生片状 α 相平均厚度约为 2.45 μm, 长宽比约 为 4.74, 长宽比略有下降。这是因为片状 α 相的粗 化是一个原子扩散的过程,炉冷相当于变相增加了 保温时间,而且充足的温度和时间下,合金元素可 以进行充分的扩散和富集^[15],从而使 $\beta \rightarrow \alpha$ 相变以 扩散的形式发生,初生片状 α相更容易以扩散转变 的形式从β相中析出,从而使组织表现为片状α相 粗大。并且炉冷相对于空冷冷却速率较慢,在充足 的时间条件下,初生片状 α 相有充足的时间得以完

图 5 不同固溶温度下 TC4-DT 钛合金的显微组织

Fig.5 Microstructures of TC4-DT titanium alloys after heat treatment processes of HT1 (a, a₁) and HT3 (b, b₁)

全析出并长大。因此,冷却速率的降低对于片状 α 相有粗化效果,会降低初生片状α相的长宽比。 2.1.4 时效时间对显微组织的影响

图 7 为 TC4-DT 钛合金在不同时效时间下的显 微组织。从图 7 中可以看出,在 HT1 热处理工艺条 件下,初生α相较为细小,其平均厚度约为 1.43 μm, 长宽比约为 4.84,次生α相片层厚度约为 50 nm,片 状α相相互交错;在 HT4 热处理工艺条件下,初生 片状α相含量略微增多,平均厚度约为 1.68 μm, 长宽比约为 4.01,次生α相厚度长大约为 57.2 nm, 网篮特征较为明显。即随着时效时间的增加,显微 组织中的初生片状α相长宽比略微变小,次生α片 层厚度变厚。由此可见,时效时间会影响析出的次生 α相厚度,并且对初生α相长宽比也有一定的影响。 2.2 热处理制度对TC4-DT钛合金力学性能的影响 2.2.1 TC4-DT 钛合金室温拉伸曲线

表 2 为不同热处理工艺下 TC4-DT 钛合金的力 学性能。图 8 为 TC4-DT 钛合金室温应力-应变曲线。 不同的热处理条件会出现不同的显微组织,显微组 织形貌尺寸对材料的力学性能存在影响。从图 8 可 以看出,不同热处理工艺形成趋势相近的应力-应变 曲线。在变形初期,拉伸试样曲线在弹性部分基本 重合。随着应变的增加,出现加工硬化现象;当拉 伸试样到达屈服点之后,试样进入塑性变形阶段; 当应力达到拉伸试样极限后出现缩颈现象,产生集 中变形,直至试样断裂。相关研究表明^[16],应变增

图 7 不同时效时间下 TC4-DT 钛合金的显微组织

Fig.7 Microstructures of TC4-DT titanium alloys after heat treatment processes of HT1 (a, a₁) and HT4 (b, b₁)

表 2 TC4-DT 合金锻件经不同热处理工艺后的力学性能 Table 2 Tensile properties of TC4-DT alloy forgings after different heat treatment processes

Process	$\sigma_{\rm b}/{ m MPa}$	$\sigma_{0.2}/\mathrm{MPa}$	δ /%	ψ /%
HT1	887.03	776.5	6.3	12.16
HT2	877.14	763.2	9.4	16.08
HT3	902.34	798.1	4.7	10.52
HT4	852.45	774.3	9.1	12.68
HT5	901.8	821.4	5.4	12.34
HT6	881.2	779.6	5.8	12.76
HT7	830.28	751.6	6.4	13.40

Fig.8 Stress-strain curves of TC4-DT titanium alloy at room temperature

加时,材料的位错密度增加,位错带来的硬化效果 明显大于动态软化效果,此时为加工硬化阶段,应 力会随着应变的增加迅速增大;在软化阶段,动态 结晶和动态回复等软化机制抵消部分由加工硬化引 起的位错密度的增加,此时占据主导地位的仍是加 工硬化,应力表现为随着应变的增加而缓慢增大。 2.2.2 固溶温度对 TC4-DT 钛合金拉伸力学性能的

影响

由 HT1 和 HT3 热处理工艺可以得出,随着固 溶温度由 990 ℃增加到 1005 ℃, TC4-DT 钛合金 抗拉强度由 887 MPa 升高到至 902 MPa。由此可见, 固溶温度的上升可以提高 TC4-DT 钛合金的强度, 但是其延伸率由 6.3%下降至 4.7%, 同时断面收缩 率也有所下降。钛合金在塑性变形过程中,大量位 错在析出相附近塞积,而初生片状 α 相对位错的滑 移具有阻碍作用,导致位错在运动过程中阻力增加^[17]。 当固溶温度为990 ℃时,合金初生α相长宽比较小, 合金阻止位错运动的能力较差,因此合金呈现较低 的强度和较高的塑性。当固溶温度为 1005 ℃时, 初生片状 α 相长宽比增加,较大长宽比的初生 α 相 组织在变形时会产生较大的变形阻力,并且初生片 状 α 相长宽比越大, α/β 之间的相界面积就越大, α/β 相界面是阻止位错运动的主要屏障,因此初生片状 α相长宽比越大,位错运动阻力越大^[18-19],导致TC4-DT 合金强度升高,塑性降低。

同时初生片状 α 相作为 TC4-DT 钛合金的析出 强化相,弥散分布的初生片状 α 相有利于合金强度 的提升^[20]。并且在固溶过程中,温度升高,亚稳 β 相生成量增加,后续时效过程中的交错分布次生 α 相析出量增加,而较小尺寸的次生 α 片层能够降低 残余 β 基体内位错滑移长度,合金强度提高,塑性 降低。

2.2.3 固溶时间对 TC4-DT 钛合金拉伸力学性能的 影响

图 9 为 TC4-DT 钛合金不同固溶时间下的室温 拉伸性能。图 10 为次生 α 相长宽比对 TC4-DT 合金 强度和塑性的影响。从图 9 中可以看出, TC4-DT 钛合金的抗拉强度和屈服强度随着固溶时间的延长 呈现下降趋势。这是由于随着固溶时间的延长,时 效后析出的次生 α 相长宽比变大, 意味着具有相同 取向的由次生 α 相和 β 相相间排列的团簇就越大, 相应的此种团簇就越大, 即整个组织状态混乱程度 下降, 使裂纹在扩展中不容易遇到阻碍, 最终导致

Fig.9 Effects of solution time on strength and plasticity of TC4-DT titanium alloy

图 10 次生 α 相长宽比对 TC4-DT 钛合金强度和塑性的影响 Fig.10 Effects of secondary α phase aspect ratio on strength

材料的抗拉强度降低^[21]。结合表 2 可以看出, HT5 热处理工艺抗拉强度为 901.8 MPa, 相较于 HT6 热 处理工艺条件下的抗拉强度 881.2MPa, HT5 条件下 的抗拉强度提高了 20 MPa, 其延伸率下降的不大, 断面收缩率近乎一样。同时还发现,组织中出现了 相对粗大的初生 α 相,并且随着固溶时间的延长, 逐渐增多增大,使组织变得不均匀。相关研究表明, 粗大初生α相的产生原因是多方面的^[22],一方面合 金熔炼凝固过程中成分偏析,造成热加工过程组织 的遗传:另一方面热处理过程时间的长短及冷却方 式的不同也将影响粗条状 α 相的形成, 这对合金塑 性、抗拉强度等将产生一定的影响。为减少或者改 善该类组织,一方面可对原始材料熔炼铸造工艺加 以控制,减少组织遗传;另外一方面在锻造前可通 过高温均匀化处理、锻造过程中通过变形再结晶、 并且采用适当的锻后冷却方式加以控制[23]。

2.2.4 冷却速率和时效时间对 TC4-DT 钛合金拉伸 力学性能的影响

结合表 2 对比 HT1 和 HT2 热处理工艺,随着 时效后冷却速率的提高,合金的室温抗拉强度有所 提高,塑性有所下降。在 HT1 和 HT2 热处理工艺条 件下,合金的抗拉强度分别为 887.03 和 877.14 MPa, 但合金的延伸率和断面收缩率有所下降。这是因为 随冷却速率的提高,过冷度变大,次生 a 相形核率 升高,尺寸较小的次生 a 相析出数量增多,分布较 为错乱,次生 a 相相互齿合,并且冷却速率的增加 使初生片状 a 相的长宽比有所增加,对合金的强度 起到一定的提高作用。

由 HT1 和 HT4 热处理工艺得出,时效时间的延长,对材料力学性能有一定影响。结合表 2 可以看出,随着时效时间的延长,抗拉强度呈现略微下降的趋势,其断面收缩率和延伸率出现上升的趋势,由 HT1 热处理工艺得出,抗拉强度为 887.03 MPa,相较于 HT4 热处理工艺的抗拉强度 852.45 MPa,HT1 热处理工艺的抗拉强度升高了 30 MPa,但是其延伸率降低了约 30%,断面收缩率近乎一样。

2.3 拉伸断口分析

拉伸断口形貌也可反映钛合金的力学性能^[24-25]。 理论上,同种材料在不同工艺下,由于组织和力学 性能的显著差异,断口形貌亦具有显著区别。通过 图 11 可以观察到拉伸断口显微结构,试样是在拉伸 正应力下进行,应力在整个断口上分布均匀,显微 空洞在拉力的作用下向 3 个方向上均匀长大,形成 了等轴韧窝。韧窝作为塑性断裂的主要微观特征之 一,一般用韧窝的深度及宽度来判断塑性的大小,

图 11 不同热处理条件下 TC4-DT 钛合金室温拉伸断口形貌

Fig.11 Tensile fracture morphologies of TC4-DT titanium alloy at room temperature under different heat treatment processes: (a) HT1, (b) HT4, (c) HT3, and (d) HT7

初窝的大小和深浅一般取决于第二相的数量分布及 基体的塑性变形能力,而在拉伸条件相同的情况下, 初窝越大越深,其塑性就越好。图 11b 的初窝明显 比图 11a 的初窝大,使得 TC4-DT 钛合金棒材经过 HT4 热处理工艺后其塑性大于经 HT1 热处理工艺后 的塑性。图 11a 的微观结构相比于图 11c 初窝数量 更多。试样微观结构显示图 11a 棒材的塑性要高于 图 11c 棒材,对比表 2 数据也有同样的结果。图 11d 同时出现了少量的撕裂棱,说明试样的断裂机制以 韧性断裂为主并伴有准解理断裂。

3 结 论

 随着准 β 热处理固溶温度的升高,TC4-DT 合金初生片状 α 相尺寸有所增大,初生片状 α 相长宽 比变大,合金的抗拉强度、塑性均下降。抗拉强度和 塑性与初生片状 α 相长宽比分别呈正相关和反相关。

2) TC4-DT 合金时效后冷却速率的下降对于初 生片状 α 相有粗化效果,初生片状 α 相长宽比变大, 并且初生片状 α 相厚度随着冷却速率的下降而增 大,合金的室温抗拉强度有所下降,塑性有所提高。

3)随着 TC4-DT 合金时效时间的延长,初生片 状α相长宽比变小,次生α片层厚度变大,抗拉强 度呈现略微下降的趋势,其断面收缩率和延伸率出 现上升的趋势。

4) 随着 TC4-DT 合金固溶时间的延长, 初生片

状 α 相长宽比变小,次生片状 α 相长宽比变大,抗 拉强度和屈服强度呈下降趋势。

参考文献 References

- [1] Zhu Zhishou(朱知寿), Ma Shaojun(马少俊), Wang Xinnan (王新南) et al. Titanium Industry Progress(钛工业进展)
 [J], 2005(6): 10
- [2] Yan Mingfu(颜鸣皋), Wu Xueren(吴学仁), Zhu Zhishou (朱知寿) et al. Aeronautical Manufacturing Technology (航空制造技术)[J], 2003(12): 19
- [3] Zhu Zhishou(朱知寿). Aeronautical Manufacturing Technology(航空科学技术)[J], 2012(1): 5
- [4] Li Hui(李 辉), Zhao Yongqing(赵永庆), Qu Henglei(曲恒 磊) et al. Rare Metal Materials and Engineering(稀有金属 材料与工程)[J], 2007, 36(6): 963
- [5] Zhang Wangfeng(张旺峰), Cao Chunxiao(曹春晓), Li Xingwu(李兴无) et al. Rare Metal Materials and Engineering(稀有金属材料与工程)[J], 2009, 38(6): 972
- [6] Shi Xiaohui(石晓辉), Zeng Weidong(曾卫东), Sun Yu(孙 宇) et al. Rare Metal Materials and Engineering(稀有金属 材料与工程)[J], 2016, 45(9): 2327
- [7] Zhou Jianwei(周建伟), Sun Qianjiang(孙前江), Peng Jiahao(彭嘉豪) et al. Rare Metal Materials and Engineering(稀有金属材料与工程)[J], 2022, 51(9): 3353
- [8] Zhang S Y, Lin X, Chen J et al. Rare Metals[J], 2009,

28(6): 537

- [9] Tiley J, Searles T, Lee E. Materials Science and Engineering A[J], 2004, 372: 191
- [10] Tian Ximing(田喜明), Liu Keni(刘珂妮). Titanium Industry Progress(钛工业进展)[J], 2013, 30(6): 17
- [11] Guo Ping(郭 萍), Zhao Yongqing(赵永庆), Hong Quan(洪 权) et al. Rare Metal Materials and Engineering (稀有金属材料与工程)[J], 2013, 42(11): 2367
- [12] Wang Xinnan(王新南), Zhu Zhishou(朱知寿), Tong Lu
 (童路) et al. Titanium Industry Progress(钛工业进展)[J], 2008, 25(7): 12
- [13] Lei Jinwen(雷锦文), Zeng Weidong(曾卫东), Zhu Zhishou(朱知寿) et al. Transactions of Materials and Heat Treatment(材料热处理学报)[J], 2009, 30(5): 14
- [14] Wang Zhe(王 哲), Wang Xinnan(王新南), Zhu Liwe(祝 力伟) et al. Titanium Industry Progress(钛工业进展)[J], 2016, 33(6): 11
- [15] Huang Sensen(黄森森), Ma Yingjie(马英杰), Zhang Shilin(张仕林) et al. Acta Metallurgica Sinica(金属学报)[J], 2019, 55(6): 74
- [16] Ouyang D L, Cui X, Lu S Q et al. Journal of Materials Research and Technology[J], 2020, 9:15 662
- [17] Tian Chenchao(田晨超), Gao Yang(高 阳), Zhang Juan(张娟) et al. Welded Pipe and Tube(焊管)[J], 2019, 42(11): 31

- [18] Shi Xiaoyun(史小云), Gao Yushe(高玉社), Wang Wensheng(王文盛) et al. Hot Working Technology(热加 工工艺)[J], 2013, 42(14): 163
- [19] Wang W, Liu G L, Huang C Z et al. The International Journal of Advanced Manufacturing Technology[J], 2021, 113(3): 855
- [20] Wang B H, Cui W B, Wang C K et al. Materials Research Express[J], 2021, 8(4):
- [21] Tan Yuquan(谭玉全). The Effects of Heat Treatment on Microstructure and Mechanical Properties of TC4 Titanium and the Research on Stress Relief After Heat Treatment (热处理对 TC4 钛合金组织、性能的影响及残余应力消除 方法的研究)[D]. Chongqing: Chongqing University, 2016
- [22] Zhang Lijun(张利军), Guo Kai(郭 凯), Zhang Chenhui (张晨辉) et al. MW Metal Forming(金属加工(热加 工))[J], 2014(11): 80
- [23] Zhu Liwei(祝力伟), Wang Xinnan(王新南), Zhu Zhishou (朱知寿) et al. Titanium Industry Progress(钛工业进展)[J], 2012, 29(1): 9
- [24] Zhu Baohui(朱宝辉), Hu Xiaochen(胡晓晨), Wu Menghai(吴孟海) et al. The Chinese Journal of Nonferrous Metals(中国有色金属学报)[J], 2010, 20(S1):144
- [25] Tao Haiming(陶海明), Wei Yanguang(魏衍广), Luo Zheng(罗 峥) et al. Materials Reports(材料导报)[J], 2014, 28(16): 107

Effect of Quasi- β Heat Treatment on Microstructure and Tensile Properties of TC4-DT Titanium Alloy

Ma Xin, Sun Qianjiang, Wen Chao, Xu Hao, Qi Feiyong

(School of Aeronautical Manufacturing Engineering, Nanchang Hangkong University, Nanchang 330063, China)

Abstract: The effects of different quasi- β heat treatment processes on the microstructure and mechanical properties of TC4-DT titanium alloy were investigated, and the microstructure and fracture morphology of mechanical properties were compared and analyzed. Results show that with increasing the solution temperature from T_{β} +10 °C to T_{β} +25 °C, the ratio of length to width (aspect ratio) of primary α phase and the content of secondary α phase are increased, the plasticity is decreased, and the tensile strength is increased. The decrease in cooling rate presents the coarsening effect on the primary lamellar α phase, which reduces the aspect ratio of the primary lamellar α phase. Therefore, the tensile strength gradually increases, whereas the plasticity gradually decreases. With prolonging the solution time, the width of the primary lamellar α phase is increased, the aspect ratio is decreased, and the aspect ratio of the secondary lamellar α phase is increased. Many dimples with different sizes exist in the fracture morphology of TC4-DT titanium alloy. With increasing the solution temperature and prolonging the aging time, the size of dimples of tensile fracture samples is increased to different degrees, and a small number of tearing edges appear at the same time. The fracture mechanism of the samples is mainly ductile fracture with quasi-cleavage fracture.

Key words: TC4-DT titanium alloy; heat treatment process; microstructure; tensile properties

Corresponding author: Sun Qianjiang, Associate Professor, School of Aeronautical Manufacturing Engineering, Nanchang Hangkong University, Nanchang 330063, P. R. China, Tel: 0086-791-83863032, E-mail: sunqj@vip.163.com