DOI: 10.12442/j.issn.1002-185X.20240487.

ZGH451 镍基高温合金 SLM 成形开裂机理分析

吴寅1,2,张浩2,朱玉平3,方世民4,丁尧瑶4,梁力文4,闫光强4,邱子翔2.5,

王海轩², 东野生栓², 田苗诚², 杨阳², 黄其忠², 郑永健²

(1 宁波大学 材料科学与化学工程学院,浙江 宁波 315211)
(2 中国科学院宁波材料技术与工程研究所,浙江 宁波 315201)
(3 中国科学院金属研究所 师昌绪先进材料创新中心,辽宁 沈阳 110016)
(4 宁波中科祥龙轻量化科技有限公司,浙江 宁波 315300)
(5 中国科学院宁波材料技术与工程研究所海洋关键材料重点实验室,浙江 宁波 315201)

摘 要:本文以 SLM 成形 ZGH451 镍基高温合金为研究对象,揭示凝固液膜导致裂纹萌生的机理,澄清合金元素、织构对裂纹缺陷产生的作用。实验结果表明:ZGH451 镍基高温合金 SLM 成形过程中产生的裂纹主要分为内部凝固裂纹和边缘冷裂纹两类。在凝固末期枝晶间存在低熔点相液膜,凝固前沿高熔点 Cr 元素颗粒会阻碍熔体补缩,枝晶间液膜在补缩不足和枝晶热应力的双重作用下发生破裂导致材料心部凝固裂纹的形成。合金轮廓区域冷却速率高、热应力大,累积的残余应力超过材料强度极限或晶界结合强度导致冷裂纹形成。输入激光能量密度低于 45J/mm³时合金中未熔合缺陷沿建造方向密集分布,超过 140 J/mm³时锁孔与气孔形成概率陡增,这些缺陷会在应力作用下诱发裂纹。枝晶间析出的 WC 等颗粒越多、晶粒取向差越大合金裂纹敏感性越高。沉积态 ZGH451 镍基高温合金以γ、γ′相为主,样品在(100)晶面具有择优取向,晶粒平均纵横比达到 11.25,组织织构显著加剧了晶粒边缘与尖端应力集中,促进裂纹的萌生、改变裂纹延伸方向。
 关键词: ZGH451 镍基高温合金:选区激光熔化;裂纹;合金元素;组织结构
 中图法分类号:TG???

金属粉床激光增材制造技术是金属 3D 工艺中成形 精度最高、综合性能较优良的工艺方法[1]。其中选区激 光熔化(SLM)技术可对精密复杂的金属零件进行直接制 造,并且生产周期短,粉末材料可重复利用,在航空制 造领域应用潜力巨大,特别适用于难成形,高熔点的金 属材料,如高温合金^[2]。高温合金又被称为"超合金", 是以铁、钴、镍为基体元素,加入十多种合金化元素进 行强化, 能在 600℃以上的高温及高应力环境下长期工 作的一类金属材料[3]。这类合金具有较高的高温强度, 良好的疲劳性能、断裂韧性、抗热腐蚀、抗氧化性能等, 综合性能优异。高温合金的研发主要围绕航空发动机的 制造[4]。镍基高温合金相较于其它高温合金高温性能更 优异, 耐腐蚀性与持久性能更优良, 是航空、航天、能 源、武器等重要领域最有潜力的材料之一^[5]。使用 SLM 制造镍基高温合金发动机热端部件可以实现其拓扑优化 和轻量化设计,有效提高发动机性能并降低能耗。然而, 热端部件镍基高温合金中 Al、Ti 元素含量通常较高,可 焊性较差,在 SLM 成形过程中开裂风险较大。

Hua Yan 等^[6]在研究工艺参数对 SLM 成形 K438 合 金显微组织与力学性能影响时,发现打印时过高或过低 的输入能量,均会导致孔隙缺陷的生成,并且在孔隙缺 陷处会形成裂纹,严重损害合金的力学性能。Luke N 等 ^[7]使用 SLM 成形 CM247LC 镍基高温合金时,发现岛状 扫描策略会对组织结构产生较大影响,而组织结构的改 变可以有效消除合金内部裂纹。Guan Liu 等[8]研究了激 光重熔对镍基高温合金热裂纹的影响,发现热裂纹易在 大角晶界发生,同时高含量的 Cr、Mo 元素会阻止液体 的流动,影响裂纹的形成。Chandra 等[9]针对增材制造镍 基单晶高温合金的热裂纹问题,在定量评价影响因素的 基础上,利用数值模拟证实了微偏析对合金裂纹的萌生 有促进作用。Chauvet 等^[10]研究增材制造不可焊镍基高 温合金的缺陷起源时,发现样品在打印方向存在收缩孔 隙与裂纹等微观组织缺陷,根据拉伸断面裂纹的观察, 判断为热裂纹,并讨论了热裂纹的产生条件。以上研究 表明,影响 SLM 成形镍基高温合金开裂的因素众多, 作用机理复杂,仍有待进一步研究。

收稿日期:

基金项目:中国科学院国际伙伴计划(181GJHZ2023132MI);浙江省"领雁"项目(2024C01121);"3315 计划"C 类创新团队(2020A-27-C); 甬江人才工程科技创新领域青年项目(2021A-112-G, 2022A-202-G);浙江省"尖兵"研发攻关计划(2023C01053); 宁波市重大科技任务攻关项目(2022Z190)

作者简介: 吴寅, 男, 1998 年生, 硕士, 宁波大学材料科学与化学工程学院, 浙江 宁波 315000, E-mail: wuyin@nimte.ac.cn

ZGH451 镍基高温合金是我国自主研发,专为增材制造设计的新型定向凝固高温合金^[11]。其力学性能优异,特别是它的屈服强度与传统定向凝固工艺制备的第 三代单晶高温合金相近。但是目前 SLM 成形 ZGH451 合金的裂纹仍难以完全消除,其裂纹形成机理尚不明确, 严重影响该合金在航空制造领域的应用。本文针对 ZGH451 合金在激光增材制造过程中的开裂问题进行研 究,通过显微观察与物相分析等表征方法,揭示合金组 织的成分结构对 SLM 成形 ZGH451 合金裂纹形成的内 在机理。

1 实验材料、设备与方法

ZGH451 镍基高温合金粉末采用真空感应气雾化法制备。合金粉末粒径分布、形貌、显微组织如图 1,实验粉末通过 45µm 孔径网筛筛分,粉末卫星粉少、球形度高、流动性好:粉末的显微结构如图 1c,发现粉末内部为胞状组织。图 1d 为粉末的粒径分布,其 D10、D50、D90 粒径分别为 13.25µm、28.48µm、52.32µm,颗粒分布集中。其化学成分如表 1 所示。

ZGH451 镍基高温合金沉积态样品的打印使用 HBD-400 SLM 设备,打印精度达 0.05mm,设备以氩气作 为保护气体,打印前将粉末烘干,提高粉末在打印过程中 的流动性,并保证成形腔内的氧浓度小于 0.08%。上下 相邻两层使用旋转 67°的扫描方式,结合打印前的基板 预热,以改善样品成形过程中内部的应力集中和冷却后 产生的残余应力^[11]。制备 10mm×10mm×15mm 的长方 块进行致密度、金相组织等检测。

使用 Malvern 微米粒度仪对粉末粒径进行检测。样 品打印完成后,进行粗磨与机械抛光,使用 Axio observer 5 光学显微镜(OM)观察试样的组织形貌。实验中选用的 腐蚀剂是 5mlCuCl₂+5mlHCl+10mlC₂H₅OH,在 Gemini SEM 300 热场发射扫描电子显微镜下观察金相组织,并 使用其配备的能谱仪(EDS)对析出相和缺陷内部进行成 分检测。对机械抛光后的样品进行电化学抛光,使用 30V 直流电源在 80mlH₂O+5mlCH₃COOH+15mlHNO₃ 试剂里 电解抛光 30s,消除样品表面的应力后,对样品表面进 行电子背散射衍射(EBSD)分析。利用 ADVANCE D8 多 晶 X 射线衍射仪对粉末与试块物相分析。

图 1 ZGH451 合金粉末显微形貌与粒径分布

Fig.1 Microstructure(a-c) and particle size distribution (d) of ZGH451 alloy powder

Table Chemical composition of ZGH451 nickel-based superalloys (%, mass fraction)

Element	Ni	Ta+Mo+W	Cr	Co	Al+Ti	Hf	Fe	Н	С	0
Wt%	Bal.	15.5	8	8	5.5	1.5	0.019	< 0.001	0.008	0.004

2 结果与分析

2.1 选区激光熔化制备 ZGH451 合金成形质量

SLM 成形过程是由激光从点延伸至线,扩展到面, 从而堆积成体的过程,在整个成形过程中选区激光熔化 的工艺参数决定了试样的成形质量^[13]。本实验通过控制 体积能量密度来改善样品的成形质量,体能量密度(VED) 计算公式为:

$$VED = \frac{P}{vht}$$
(1)

式(1)中: P 为激光输入功率; v 为激光扫描速度; h

为扫描间距; t 为铺粉层厚。样品制备时的激光功率在 140W~260W 范围内,扫描速度区间为 700 mm/s~1500 mm/s,保持扫描间距(h =80µm)与铺粉层厚(t=30µm)不 变。根据式(1)以及本实验采用的工艺参数,展开了 VED 在 38.9J/mm³(P=140W, v=1500 mm/s)~154.8J/mm³(P=260 W, v=700 mm/s)范围内对缺陷产生的影响,发现 ZGH451 合金增材制造过程中孔隙缺陷的生成难以避免。当输入 能量低于 45J/mm³ (P=140 W, v=1300 mm/s)时,样品表面 上的未熔合沿建造方向(BD)密集分布(图 2a);当输入能 量超过 140 J/mm³ (P=240 W, v=700 mm/s)时,锁孔、大 量气孔与大尺寸裂纹存在样品表面(图 2c)。

图 2 SLM 成形的 ZGF 151 合金 OM 图

Fig.2 OM image of ZGH451 alloy formed by SLM: (a and c) morphological diagrams of different defects, (b and d) molten pool image and enlarged view

对样品每面金相进行观察, 探究 SLM 成形 ZGH451 合金成形质量。如图 2b,在 X-Y 平面(扫描方向)上,可 以明显的看到激光扫过粉末层形成的熔池痕迹,宽度大 约 80µm,与扫描间距相接近;在增材制造过程中,激 光光斑相当于一个点热源,激光扫描过程与焊接类似, 长条状的温度场使粉末熔化形成熔池,不同层间以旋转 67°的填充方向重复扫描,会使前一层或者数层熔池重 新熔化^[14],这就造成了扫描方向长条状熔池交叉分布形 貌。扫描时使相邻层间旋转 67°,是为了抑制 SLM 成形 合金中织构的形成,从而使组织中的晶粒取向随机分布 ^[15]。在 Y-Z 平面(建造方向)上,可以清楚的看到由高斯 热源形成的熔池呈鱼鳞状紧密堆叠,呈典型的 SLM 分 层特征,与中心能量高,两侧能量低相对应^[16]。堆积后 的熔池的宽度大约 100μm,深度约为 40μm。图 2d 是熔 池形貌的放大图,从中可以清晰的观察到相同晶体取向 的细小柱状晶粒,这是由于打印设备激光成形过程中送 粉方向固定,熔池凝固时会产生较大的温度梯度以及合 金较高的凝固速率,形成了选区激光熔化镍基高温合金 的典型凝固微观结构。

2..2 选区激光熔化制备 ZGH451 合金裂纹形成分析

缺陷的形成是粉末金属增材制造(AM)所面临的关键难题^[17]。SLM 工艺参数的调整会改变镍基高温合金裂纹等缺陷的数量、形貌与类型,在 2.1 中发现的孔隙不仅会降低试样的致密度,而且其对裂纹的萌生具有潜在影响^[18]。关于气孔的产生的原因:1)是在粉末气雾化时,

或有少部分粉末颗粒存在气体滞留在粉末内部的情况, 打印时残留气体没有释放,且激光输入能量密度低,熔 池的冷却速度快^[19],使气体难以逸出,导致样品中形成 微型球状气孔; 2)是在激光扫描时,金属粉的蒸发或者 惰性气体来不及逸出而形成表面光滑的气孔^[16]。存在的 气孔破坏材料连续性,当周围形成应力集中点时,裂纹 便会产生,如图 3a 所示。未熔合产生的主要原因为成形 过程中的球化现象(图 3b)。在 SLM 成形时,熔池中粉末 在激光照射会变成大量分散的金属球,而由于金属球尺 寸原因,有时相邻金属球存在一定的孔隙,在激光扫描 下一层或者后几层粉末形成的金属球,无法完全渗入到 已经形成的孔隙中,导致未熔合的产生^[19],从图中可以 看到未熔合区域的界面结合差,在残余应力的作用下, 裂纹便沿着未熔合边界扩展。锁孔是由于激光输入能量 过高,使金属中产生蒸气凹陷区,激光重复扫描时,它 会反复形成与坍塌,当凝固界面成形,熔池内会形成深 窄的空腔^[21],此区域在热循环产生的热应力与凝固收缩 不均匀产生的内应力共同作用下,合金便会开裂(图 3c)。

图 3 SLM 成形 ZGH451 镍基高温合金常见裂纹等缺陷形貌

Fig.3 Common cracks and other defect morphologies of ZGH451 nickel-based superalloy formed by SLM: (a) crack caused by pore, (b) crack caused by lack of fusion, (c) crack caused by keyhole pore, (d) cold crack (e) Liquid film and (f) solidification crack

以上的裂纹是由其它缺陷诱发形成的,而增材制造 镍基高温合金成形时会发生十分复杂的非稳态固态相变 与非平衡凝固,在复杂温度场共同作用下,使组织中直 接形成裂纹^[22]。实验中样品裂纹缺陷问题较严重,广泛 分布于整个样品表面,最长的可达150µm,最短的不到 10µm, 大部分为 60µm 左右。在打印轮廓部分以分布较 为密集的冷裂纹为主(图 3d),这种裂纹是由于样品边缘 冷却时,极大的温度梯度产生较快的冷却速度,导致热 应力增大,而且不同部位冷却速度的差异使液相产生不 一致的收缩,累积残余应力超过强度极限,使样品明显 地开裂,这种裂纹会沿晶界扩展或穿晶延伸,不管是从 长度还是深度都超出心部区域的裂纹;在心部区域,判 断裂纹以热裂纹中的凝固裂纹为主,这些裂纹从固液两 态的熔池(糊状区)底部开始形成,沿着建造方向扩展, 有的可以贯穿数层鱼鳞状熔池。图 3f 便为凝固裂纹的形 貌特征,图中可清晰观察到裂纹缝隙中大量一次枝晶的 存在。

凝固裂纹主要由两方面因素共同造成,一方面是凝固后期产生的缩孔,一方面是枝晶间存在的高熔点碳化物^[23]。缩孔是由于冷却时,先生成的枝晶阻碍熔融液体的流动,使液体进料不足,以至于难以补偿凝固而形成的,而且枝晶数量越多,越难以补偿熔液凝固;高熔点碳化物也是在熔池冷却凝固时析出的,它的存在会阻碍凝固过程的补缩。这两方面的综合作用下,金属溶液凝固收缩受限,局部积累的残余拉伸应力就会使薄的液膜膨胀破裂,进而产生裂纹。凝固裂纹主要萌生于晶粒间而后沿着预凝固层延伸(高位错路径),图4a是核平均取向差(KAM)图与其直方图(图4c),结合裂纹区域的晶界分布情况图(4b),可知晶界处位错密度高。根据位错理论的Read-Shockley方程中晶界能(γgb)的计算:

$$\gamma_{gb} = \frac{Gb\theta}{4\pi(1-\nu)} \left(1 + \ln\frac{b}{2\pi r_0} - \ln\theta \right) = \frac{Gb\theta}{4\pi(1-\nu)} \left(1 - \ln\frac{\theta}{\theta_m} \right)$$
(2)

式(2)中,G为剪切模量,b为Burgers 矢量,θ为晶 粒取向差角,ro为包含位错核心能量的核心半径,v为泊 松比,θm为晶界能达到最大值时的角度。由于此式不适 于计算大角度晶界,所以在此假设其晶界能最大值为常 数,令式(2)中的G/(1-v)因子以各向异性材料常数 c₁₁、 c₁₂和 c₄₄来代表,其表达式为:

$$\frac{G}{1-\nu} = \frac{c_{44}}{1-\sigma_{100}} \left[\frac{1}{\alpha} \cdot \frac{2(1-\sigma_{100})}{1+\alpha(1-2\sigma_{100})} \right]^{0.5}$$
(3)

式(3)中 G100 为晶轴的泊松比,定义 G100=C12/(C11+C12), α 为各向异性因子,定义 α=2C44/(C11-C12)。根据公式可知 晶界能与晶粒取向差角的关系,即大角度晶界能量大于 小角度晶界,晶界能越大,润湿角越低,而低的润湿角 会促进液膜的存在^[24],进而增加了裂纹的敏感性,由此 可知晶粒取向差角影响着裂纹敏感性,即这种裂纹容易 沿着大角度晶界(HAGBs)扩展,如图 4b 所示,可明显观 察到大角度晶界(晶粒取向差角大于 15°)的存在,经分析 发现大角度晶界占比 79.9%(图 4d)。另外从核平均取向 差直方图可知(图 4c),晶面 KAM 平均值只有 0.97,但 部分晶界 KAM 值达到 5,表明晶界存在应力集中问题, 当这些因素综合作用时,裂纹就会在此萌生与扩展。

FIG. 4 EDSB analysis diagram and histogram of solidification crack in ZGH451 nickel-based superalloy formed by SLM: (a and c)KAM diagram and its histogram, and (b and d) grain misorientation angle diagram and its histogram

观察合金表面裂纹的微观形貌时,发现晶界与裂纹 内都有细小颗粒存在(图5)。使用 EDS 进行元素分析,在 X-Y 平面,发现晶界与晶粒内部 C、Fe、Ti、Hf 等元素 分布差异明显,裂纹缝隙中 W 元素含量较高,这几种元 素容易形成 MC 等碳化物颗粒(M 为金属原子),而且碳 化物(如 WC)颗粒于枝晶间大量析出,导致较多颗粒聚 集,降低晶界结合强度,增加晶界脆性,进而提高合金 裂纹敏感性;分析 Y-Z 平面裂纹区域颗粒时,发现 Ni、 Co、Fe、Al 等元素均低于平均含量,而 O、Cr 存在明 显的富集,由于样品是腐蚀后进行的检测,颗粒物或被 氧化,证明了 Cr 元素晶界析出较严重。ZGH451 镍基高 温合金粉末成分中 Ti 和 Al 元素的含量达到 5.5%,在整个 镍基高温合金体系的含量占比较高,在打印过程中,Al、 Ti 不仅会在晶界处发生富集形成碳化物,还容易和γ相发 生共晶反应,产生低熔点相^[25],在激光的热积累效应下, 升温超过固相温度时,熔池中这些元素富集的晶界液化成 液膜(如图 3e),另外,合金中 Cr 元素形成的颗粒使熔液流 动受限^[8],阻碍凝固过程中枝晶间液膜的补缩,当累积的 热应力超出固相极限强度与液膜的表面张力所形成抗力 时,撕裂的液膜就会成为裂纹萌生的起始点,产生冶金缺 陷中的裂纹,会大大削弱了合金的力学性能,严重制约此 类合金的实际应用^[26],以上在裂纹区域发现的元素偏析与 富集都是 ZGH451 镍基高温合金中含量占比较高的元素, 这些元素的不均匀分布,导致合金组织热膨胀系数存在差 异,不同区域的收缩与热膨胀不一致,从而产生热应力, 此外,选区激光熔化加工过程中存在固有的温度梯度(~10⁷ K/m),时刻都在产生高热应力及快速的冷热循环,加剧热应力累积,并且镍基高温合金冷却过程的收缩率(2%~3%)较低^[27],使晶界难以移动,析出物富集,导致裂纹容易在熔池区域萌生并沿晶开裂。但和传统的定向凝固高温合金

相比,ZGH451 合金增加了 Hf 占比,碳化物中的 Hf 含量的增加可使碳化物由连续分布向弥散分布转变,并且 Hf 原子可强化晶界^[28],可有效抑制裂纹萌生。

图 5 SLM 成形 ZGH451 镍基高温合金中裂纹区域 SEM 形貌及 EDS 分析

Figure 5 SEM morphology and EDS analysis of the crack region in ZGH451 nickel-based superalloy formed by SLM: SEM images (a) and EDS analysis of the microstructure on the X-Y plane (a₁-a₆), SEM images (b) and EDS analysis of the microstructure on the X-Z plane (b₁-b₆)

2.3 SLM 成形 ZGH451 合金晶粒取向和裂纹的相关性

XRD 可以用来分析材料的晶体结构与物相组成。除了可以探究 SLM 成形 ZGH451 合金晶体生长方向,还可以发现相的结构种类。图 6 给出了粉末和选区激光熔化制备的合金试样 XRD 谱图,显示了 ZGH451 合金粉末和样品XRD 衍射峰变化。

对衍射峰进行物相分析发现 ZGH451 合金中主要存在 面心立方(FCC)的 γ、γ'两相,其它析出相所占体积分数较 小,难以分辨。但是粉末和试块的择尤取向差异明显,粉 末的最强衍射峰在 43.5°,显示粉末颗粒的晶面主要是(111) 面,而 SLM 打印出的试块在(200)晶面衍射峰最强,相应 的衍射角都为 50.9°,这说明试块在 Y-Z 平面和 X-Y 平面 都是呈<001>择优取向。从晶粒取向分布图可发现 X-Z 平 面观察到晶粒主要沿着(001)面和(101)面,在(111)面较少, 而且搭接区域的分布主要是(001)面(图 7a)。这表明,选区 激光熔化制备的 ZGH451 合金<100>取向择优生长。另外, 从反极图与极图也可证实(图 7b, d),建造面织构强度达到 2,大部分区域的立方织构都平行于建造方向(BD),这也 和上面的 XRD 谱图相对应。

熔池中的晶粒生长方向会影响裂纹的形核与扩展^[29]。 结合物相分析与电子背散射衍射(EBSD)表征结果,发现最 大热流方向(熔池生长方向)和基体相结构(FCC)共同影响 选区激光熔化过程中晶粒生长方向,使晶粒的平均纵横比 达到 11.25(图 7c),形成的柱状晶粒,使<100>方向的织构 晶粒产生不均匀应变,导致织构方向的晶粒边缘和尖端应 展现地更明显。凝固时织构方向的柱状晶,与不同取向的 力集中,诱发裂纹沿晶界萌生,促进裂纹沿织构方向扩展。 Intensity^b (a.u.) 2.0 1.5 1.0 [001] 0.5 [111] [101] 0.0 {100} {111} 0.25 Intensity d Average ratio:11.25 с (a.u.) 0.20 26 fraction 0.15 -20 {110} Area f 10 0.05 20 25 5 10 15 0 Grain aspect ratio

图 7 ZGH451 镍基高温合金 EDSB 晶粒取向分布图(IPF 图像)、极图、反极图与晶粒纵横比图 Fig.7 EDSB IPF map (a), inverse pole figure (b), grain aspect ratio map (c), and pole figure (d) in ZGH451 Nickel-based superalloy

3 结论

1)SLM 成形 GH451 镍基高温合金在凝固末期 低熔点相在大角度晶界处形成液膜,凝固前沿高熔 点含 Cr 颗粒阻碍枝晶间熔体流动,液膜凝固过程中 补缩不充分,枝晶凝固产生的热应力使液膜破裂, 最终导致了试样内部区域凝固裂纹的产生;试样轮 廓区域凝固时温度梯度大、冷却速率高、热应力大, 累积的残余应力超过材料强度极限或晶界结合强 度导致冷裂纹形。

2) 晶粒取向差角越大,晶界能越大,润湿角越低,液膜的形成几率越大,进而提高裂纹的敏感性; 凝固过程中在枝晶间大量析出的WC等颗粒会增加 晶界脆性,提高合金裂纹敏感性。

3)SLM 过程中输入激光体积能量密度决定了 ZGH451 镍基高温合金成形质量,输入激光能量密 度低于 45J/mm³时合金中未熔合沿建造方向密集分 布,超过 140J/mm³时产生锁孔与大量的气孔,这 些孔隙缺陷会在应力作用下诱发裂纹。

4)沉积态ZGH451 镍基高温合金以γ、γ/相为主, 微观结构为平均纵横比达到 11.25 的柱状晶组织。 成形样品在(100)晶面具有择优取向,平行于建造方 向的强烈柱状晶织构使组织中产生不均匀的应变, 引起晶界应力集中,促进裂纹的萌生、改变裂纹的 扩展方向。

参考文献 References

- Li Lei(李磊). <u>Research on Selective Laser Melting Process</u> <u>and Properties of Inconel 625 Nickel-based Superalloy</u>(Inc onel 625 镍基高温合金选区激光熔化工艺及性能研究)[D]. Harbin: Harbin University of Science and Technology, 201 8
- [2] Qiu Dachuang(秋大闯), Li Duosheng(李多生), Ye Yin(叶寅) et al. <u>Functional Materials</u>(功能材料) [J], 2019, 50(03): 3049-3058
- [3] Wang Guan (王冠), Song Wei (宋巍), Liang Jingjing (梁静静) et al. <u>Rare Metal Materials and Engineering</u> (稀有金属材料与工程) [J], 2024, 53(03): 787-795
- [4] Wang Di(王迪), Qian Zeyu(钱泽宇), Dou Wenhao(窦文豪) et al. <u>Aeronautical Manufacturing Technology</u>(航空制造技 术)[J], 2018, 61(10): 49-60+67
- [5] Liu Boliang(刘泊良), Ma Zhiyi(马志毅), Zhao Jun(赵军) et al. <u>Casting</u>(铸造)[J], 2023, 72(05): 485-495
- [6] Hua Y, Guangyu Z, Haichuan S et al. Materials Characte

rization[J], 2022, 191

- [7] Carter N L, Martin C, Withers J P, et al. <u>Journal of Allo</u> <u>ys and Compounds</u>[J], 2014, 615: 338-347
- [8] Liu G, Du D, Wang K et al. Vacuum[J], 2020, 181
- Chandra S, Tan X, Narayan L R et al. <u>Additive Manufact</u> <u>uring[J]</u>, 2020, 10163
- [10] Chauvet E, Kontis P, Jägle A E et al. <u>Acta Materialia[J]</u>, 2018, 142: 82-94
- [11] Zhou Runsen(周润森), Wei Kaiwen(魏恺文), Liang Jingjing (梁静静) et al. <u>Chinese Lasers</u>(中国激光)[J], 2023, 50(24): 160-170
- [12] Duan Xianyin(段现银), Long Tao(龙涛), Chen Xinyue(陈昕 悦). <u>Powder Metallurgy Industry</u>(粉末冶金工业)[J], 2023, 3 3(04): 66-74
- [13] Wei Jianfeng(魏建锋). <u>Research on the forming quality and process optimization of nickel-based superalloys by SLM</u> (镍基高温合金 SLM 成形质量研究及工艺优化)[D]. Wuxi: J iangnan University, 2020
- [14] Hou Huipeng(侯慧鹏), Liang Yongchao(梁永朝), He Yanli (何艳丽) et al. <u>Chinese Lasers</u>(中国激光) [J], 2017, 44(0 2): 269-274
- [15] Zhao Yanan(赵亚楠). <u>Microstructure control and strengthen</u> ing-toughening of Inconel 718 alloy formed by selective la <u>ser melting</u>(激光选区熔化成形 Inconel 718 合金的微观组织 控制及强韧化)[D]. Tianji: Tianjin University, 2021
- [16] Li Shuai(李帅). <u>Basic research on the microstructure and</u> property evolution of nickel-based superalloys formed by s <u>elective laser melting</u>(激光选区熔化成形镍基高温合金的组 织与性能演变基础研究)[D]. Wuhan: Huazhong University of Science and Technology, 2017
- [17] J. F, H. L, X. S et al. <u>Journal of Materials Science and</u> <u>Technology</u>[J], 2022, 122: 165-199

- [18] Chen Xiujuan(陈秀娟). <u>Analysis of defect formation and research on heat treatment process of Inconel 625 alloy for med by selective laser melting(</u>激光选区熔化成形 Inconel62 5 合金的缺陷形成分析及热处理工艺研究)[D]. Guangdong: Guangdong University of Technology, 2020
- [19] Chen Y ,Chen H ,Chen J et al. <u>Journal of Manufacturing</u> <u>Processes[J]</u>, 2020, 57: 533-542
- [20] Qiao Shen(乔绅), Zhou Wenzhe(周文哲), Tan Qingbiao(谭 庆彪) et al. <u>Precision Forming Engineering</u>(精密成形工程)
 [J], 2022, 14(08): 93-103
- [21] Xue Shengbing(雪生兵). <u>Research on the Design, Preparation, and Properties of Printable Special Nickel-based Superalloys</u>(可打印专用镍基高温合金设计、制备及性能研究)[D]. Lanzhou:Lanzhou University of Technology, 2023
- [22] Li Yao(李尧), Kou Haonan(寇浩南), Li Mengyang(李梦阳) et al. <u>Surface Technology</u>(表面技术) [J], 2024, 53(07): 1-14
- [23] Sun Xiaofeng(孙晓峰), Song Wei(宋巍), Liang Jingjing(梁静静) et al. <u>Acta Metallurgica Sinica</u>(金属学报) [J], 2021, 57(11): 1471-1483
- [24] Qingsong W, Yin X, Qing T et al. Chinese Journal of Me chanical Engineering: <u>Additive Manufacturing Frontiers</u> [J], 2022, 1(4)
- [25] Bing W, Zuming L, Bizhong N et al. <u>Journal of Alloys a</u> <u>nd Compounds</u>[J], 2021, 867
- [26] Lu N, Lei, Hu K et al. <u>Additive Manufacturing</u>[J], 2020, 3 4
- [27] Wang X, Liu L, Huang T et al. Vacuum[J], 2020, 179
- [28] Yu Zhuhuan(余竹焕), Zhang Yang(张洋), Zhai Yanan(翟娅 楠) et al. <u>Casting</u>(铸造) [J], 2017, 66(10): 1076-1081
- [29] Jin Yujing(金玉静), Guan Jiju(关集俱). <u>Electric Welding</u>
 <u>Machine(</u>电焊机) [J], 2019, 49(01): 78-84

Analysis of the SLM forming structure and cracking mechanism of ZGH451 nickel-based high-temperature alloy

Wu Yin^{1,2}, Zhang Hao², Zhu Yuping³, Fang Shimin⁴, Ding Yaoyao⁴, Liang Liwen⁴, Yan Guangqiang⁴, Qiu Zixiang^{2,5}, Wang Haixuan², Dongye Shengshua², Tian Miaocheng², Yang Yang², Huang Qizhong², Zheng Yongjian²

(1 School of Materials Science and Chemical Engineering, Ningbo University, Ningbo 315211, China)

(2 Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China)

(3 Shi-changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China) (4 Ningbo Zhongke Xianglong Lightweight Technology Co., Ltd, Ningbo 315300, China)

(5 Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences,

Ningbo 315201, China)

Abstract: This study focuses on the SLM (Selective Laser Melting) formed ZGH451 nickel-based superalloy, revealing the mechanism by which

solidification liquid films lead to crack initiation and clarifying the roles of alloy elements and texture in forming crack defects. Experimental results indicate that cracks in the SLM process of ZGH451 nickel-based superalloy can be mainly categorized into internal solidification cracks and edge cold cracks. During the late solidification stage, low-melting-point phase liquid films exist between dendrites, and high-melting-point Cr element particles at the solidification front hinder melt feeding. The insufficient feeding and thermal stress between dendrites cause the liquid film's rupture, leading to solidification cracks in the core of the material. In the alloy's contour region, high cooling rates and significant thermal stress lead to residual stress accumulation, which exceeds the material's strength limit or grain boundary cohesion strength, resulting in the formation of cold cracks. When the input laser energy density is below 45 J/mm³, the lack of fusion defects in the alloy is densely distributed along the building direction, while exceeding 140 J/mm³ sharply increases the probability of keyhole and pore formation. These defects can induce cracks under stress. The more WC and other carbide particles precipitate between dendrites, the greater the grain misorientation, and the higher the alloy's crack sensitivity. The deposited state of ZGH451 nickel-based superalloy is mainly composed of γ and γ' phases, with a preferred orientation on the (100) plane. The average aspect ratio of the grains reaches 11.25, and the significant texture exacerbates stress concentration at the grain edges and tips, promoting crack initiation and altering crack propagation direction.

Key words: ZGH451 nickel-based superalloy; selective laser melting; crack; alloy element; microstructure

Corresponding author: Zheng Yongjian, Ph. D., Senior Engineer, Ningbo Institute of Materials Technology & Engineering, CAS, Ningbo 315211, P. R. China, E-mail: yongjian.zheng@nimte.ac.cn