基于神经网络的提拉法钛单晶生长过程建模
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

TP212 TH166

基金项目:


Modeling of Czochralski Single Crystal Growth Process Using Neural Network
Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    用神经网络建立提拉法钛单晶生长过程的经验模型,并通过试验验证模型的有效性。改进钛单晶生长试验设备,采集建立经验模型所需的无噪实验数据。建立前馈神经网络预测器,建模提拉法钛晶体生长过程非线性动态特性,用自适应BP算法训练神经网络,以加快网络的学习和收敛。

    Abstract:

    First known attempt to empirically modeling and experimentally verifying the growth of ilmenite single crystals using Czockralski process is presented. Czochralski is an industrial crystal pulling process extensively used for silicon and germanium single crystal growth. The experimental apparatus for ilmenite growth process has been significantly improved, and applied to acquisition of noise-free experimental data for empirical modeling. A feedforward multilayer perceptron is used to develop a single-step predictor, modeling the thermal response of the Czochralski single crystal growth process of ilmenite. The training of the neural network is performed using adaptive back-propagation, an accelerated learning algorithm.

    参考文献
    相似文献
    引证文献
引用本文

.基于神经网络的提拉法钛单晶生长过程建模[J].钛工业进展,2006,23(1):21-23.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:2005-05-20
  • 最后修改日期:2005-05-20
  • 录用日期:
  • 在线发布日期:
  • 出版日期: