基于RBF神经网络法的Zr-4合金管材酸洗工艺模型
DOI:
作者:
作者单位:

作者简介:

通讯作者:

中图分类号:

基金项目:


Author:
Affiliation:

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    研究了Zr-4合金管材酸洗处理过程中,酸洗去除量、酸水转换时间、冲水时间及酸洗次数对管材氟残留量的影响,并基于径向基(RBF)人工神经网络法建立了Zr-4合金管材酸洗工艺与氟残留的神经网络模型。结果表明:冲水酸水转换时间和冲水时间对氟残留量均有影响,且酸水转换时间的影响更为显著;氟残留量与酸洗次数无明显对应关系。Zr-4合金酸洗工艺的RBF神经网络模型结构为3-5-1,实际值与模拟值的相对误差为9.2%。该神经网络模型具有较高的可靠性,可为Zr-4合金酸洗工艺参数的优化提供参考。

    Abstract:

    参考文献
    相似文献
    引证文献
引用本文

卫新民;袁改焕;李小宁.基于RBF神经网络法的Zr-4合金管材酸洗工艺模型[J].钛工业进展,2015,32(4).

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2021-05-06
  • 出版日期: