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Fig.5 EBSD results of GNPs/Al composites: (a) EBSD map, (b) grain size distribution, and (c) misorientation angle distribution

Fig.4 EBSD results of Al matrix: (a) EBSD map, (b) grain size distribution, and (c) misorientation angle distribution
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Fig.8 Interface microstructures of GNPs/Al composites: (a) graphene plane-Al and (b, ¢) graphene edge-Al
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Microstructure and Mechanical Properties of GNPs/Al Composites
Fabricated by Friction Stir Processing

Miao Yu, Xia Chun, Huang Chunping, Ke Liming, Fu Qiang
(National Defence Key Discipline Laboratory of Light Alloy Processing Science and Technology,
Nanchang Hangkong University, Nanchang 330063, China)

Abstract: GNPs/Al composites were fabricated by friction stir processing (FSP) using pure aluminum as the matrix materials. The
microstructure (including the matrix, reinforcement and interface) and mechanical properties were investigated, and the reinforcing
mechanism of the composites was analyzed. The results show that the matrix is obviously refined, and many high angle grain boundaries
are generated. The GNPs tend to be exfoliated and broken, resulting in large amounts of GNPs edges during FSP. The Al-C atomic-scale
diffusion is easy owing to C atoms activity at the GNPs edges; as a result the interface transitions form between the GNPs edges and Al
matrix. The yield strength and ultimate tensile strength of 1.8vol%GNPs/Al composites are 73 and 147 MPa. Compared to those of
unreinforced Al, they increase by 92.1% and 79.3%, respectively. Interface load transfer, Orowan and grain refinement are the principal
reinforcing mechanism in sequence according to the theoretical calculation, and the calculated and experimental yield strength of the
composites increase with the increase of graphene content; concurrently, the deviations between the experimental and calculated strength
also slightly increase. However, the interface load transfer cannot be well achieved owing to GNPs disorder distribution in the composites;
therefore there is still a gap between the actual yield strength and theoretical calculation.

Key words: GNPs/Al composites; friction stir processing; microstructure; mechanical properties; reinforcing mechanism

Corresponding author: Xia Chun, Ph. D., Associate Professor, National Defence Key Discipline Laboratory of Light Alloy Processing Science
and Technology, Nanchang Hangkong University, Nanchang 330063, P. R. China, Tel: 0086-791-83863023, E-mail: xiachun2002@163.com



