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Fig.1 Schematic illustrations of strain waveforms: (a) ST, (b) FT,

and (c) TR
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Table 1 Tensile and compression strain rate for
three strain waveforms

Waveform & /s £/s"
ST 0.001 0.004
FT 0.004 0.001
TR 0.004 0.004

Note: ¢ - tensile strain rate; ¢, - compression strain rate
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Fig.2 Cyclic stress response curves of Inconel 625 alloy under three strain waveforms and different total strain amplitudes: (a) Ag /2 =

0.3%, (b) Ae /2 = 0.4%, (c) Aec/2 = 0.5%, (d) Aei/2 = 0.6%, and (e) Ae,/2 = 0.7%
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Fig.3 Microstructures of Inconel 625 alloy after low cycle fatigue deformation under three strain waveforms and different total strain

amplitudes: (a) ST, A& /2=0.4%; (b) FT, Ae:/2=0.4%; (c) TR, A& /2=0.4%; (d) ST, Ae/2=0.6%; (e) FT, Ae;/2=0.6%; (f) TR, A& /2=0.6%
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Fig.4 Total strain amplitude (Ae/2)-fatigue life (Ny) curves of

Inconel 625 alloy under three strain waveforms
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Table 2 Plastic strain range and creep component corres-

C R ZR MR AT SE

ponding to three strain waveforms at different
applied total strain amplitudes

Ae/2 Waveform Agy/mm-mm’ Ag,/mm-mm” Ag,*/mm-mm’

TR 0.0009185 - -
0.3% ST 0.0012577 0.0003392 -

FT 0.0009661 - 0.0000476

TR 0.0024445 - -
0.4% ST 0.0027893 0.0003448 -

FT 0.0025191 - 0.0000746

TR 0.0037704 - -
0.5% ST 0.0041383 0.0003679 -

FT 0.0038949 - 0.0001245

TR 0.0055704 - -
0.6% ST 0.0059527 0.0003823 -

FT 0.0057715 - 0.0002011

TR 0.007128 - -
0.7% ST 0.007532 0.000404 -

FT 0.007411 - 0.000283

Note: Ae/2-applied total strain amplitude; Agp-plastic strain range;

Ag,-tensile  creep  component;  Ag,*-compression  creep

component
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Fig.5 Plastic strain amplitude (Aep/2)-fatigue life (Ny) curves of

Inconel 625 alloy under three strain waveforms
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Table 3 Strain fatigue parameters of Inconel 625 alloy under
three strain waveforms

Parameter ST FT TR
&% 0.211 0.634 0.586
c —0.648 —-0.745 —0.728
o'f/MPa 915.7 1063.0 880.1
b -0.120 -0.131 -0.102
K'/MPa 1981.2 1439.4 1309.1
n' 0.217 0.175 0.151

Note: ¢'r-fatigue ductility coefficient; c-fatigue ductility index; o's+
fatigue strength coefficient; b-fatigue strength index; K'-cycle

strength coefficient; n'-cyclic strain hardening index
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Fig.6  Elastic strain amplitude (Ae./2)-fatigue life (Vy) curves of

Inconel 625 alloy under three strain waveforms
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Fig.7 Cyclic stress-strain curves of Inconel 625 alloy under three

strain waveforms
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Fig.8 Morphologies of low cycle fatigue crack initiation zone of Inconel 625 alloy under three strain waveforms and different total strain

amplitudes: (a) ST, A& /2=0.4%; (b) FT, A&;/2=0.4%; (c) TR, Ae /2=0.4%; (d) ST, A /2=0.6%; (e) FT, A& /2=0.6%; (f) TR, A& /2=0.6%
p



-« 1268 * WA S EA RS TR

50 4%

Ko 3 Tl AR B RIUAS [A) SN AR T R Inconel 625 4 1G9 57 RELLH J& X 1K) 3R
Fig.9 Morphologies of low cycle fatigue crack growth zone of Inconel 625 alloy under three strain waveforms and different total strain

amplitudes: (a) ST, Ae/2=0.4%; (b) FT, A&;/2=0.4%; (c) TR, Ae /2=0.4%; (d) ST, A /2=0.6%; (e) FT, Ae/2=0.6%; (f) TR, Ae/2=0.6%
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Effect of Strain Waveform on Low-Cycle Fatigue Properties of Inconel 625 Alloy

Liu Xueying', Chen Lijia', Zhou Ge', Wang Baosen >
(1. School of Materials Science and Engineering, Shenyang University of Technology, Shenyang 110870, China)
(2. Institute for Welding and Surface Technology of R & D Center, Baoshan Iron & Steel Co. Ltd
Research Institute, Shanghai 201900, China)

Abstract: The low-cycle fatigue tests for the Inconel 625 alloy were performed at 650 °C under three strain waveforms including
triangular waveform as well as two sawtooth waveforms with slow-tension followed by fast-compression and fast-tension followed by
slow-compression. And the low cycle fatigue deformation and fracture behaviors of the alloy under different strain waveforms were
investigated. The results show that the Inconel 625 alloy exhibits the cyclic hardening at different strain waveforms and applied total strain
amplitudes from 0.3% to 0.7%. When two sawtooth waveforms are adopted, the fatigue life of the alloy will shorten due to the introduction
of either tensile or compressive creep strain component. In addition, the relation between the plastic or elastic strain amplitudes and fatigue
life as well as between the cyclic stress amplitude and plastic strain amplitude exhibits a single slope linear behavior. The observations on
the fatigue fracture surfaces reveal that under three strain waveforms, the fatigue cracks initiate and propagate in a transgranular mode.

Key words: Inconel 625 alloy; low-cycle fatigue; strain waveform; fracture morphology; failure mode
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