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Tablel Alloyssmelting methods and smelting levels of china and overseasin recent years

[111

Smelting levels/pg-g™

Countries Smelting methods
S (0] N
VAR 1 1 1
VIM (CaO crucible) <10 <10 10
Abroad EBCHR (electron beam cold hearth refining) (4~5) (4~5) (20~40)
VIM+ESR+VAR - - -
VIM+EBR (electron beam remelting) - 7 60
VIM+EMS (electromagnetic stirring) <10 1 4
VIM+VAR (10~19) (10~19) 52
China VIM+ESR (8~19) (5~9) -
VIM+VAR+ESR 1 24 65
VIM+VAR+ESR (Ar shield) 7 5 53
VIM (CaO crucible) 3 <5 <5
Ve&y - = 5: a o ~ [m:: b Velocty [ms1) c
S o 15 S o & B2 o Q&-\e\—;v Ca 1
& & N s . }\-‘.-,' i

1 SRR &I T &M mRAPRE
Fig.1 Flow pattern of molten alloy for three flow control devices: (a) normal configuration, (b) with dam, and (c) dam and weir!*®
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Fig.2 Predicted solidification behavior of ingot, left part: solid
volume fraction gs (contours), right part: macrosegregation

index SI (contours) and liquid fluid flow (arrows)™*”
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Fig.3 Simulation of central shrinkage crack formation in ingot
and experimental verification: (a) experiment results
showing part of sliced ingot and (b) SCP on longitudinal
ingot plane®”
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Fig.4 Numerica simulation results for distributions of flow field (the upper right of each picture), temperature (the left part) and liquid

fraction, (the right part) during the whole ESR process”
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Fig.5 Simulation of VAR physica field distribution: (a) magnetic

— 1000

500
300

u/m-s*
0.14
0.050

Z 0020
= 0010
= 0.0050

0.0020
0.0010
0.0005

flux density (left half) and electric current density (right
half); (b) velocity field (left half) and thermal field (right

half) (in each contour, isolines of liquid fraction (fl = 0.98,

0.07) are plotted)“!



511 1]

WRVR S - il A i e 2 2 BB T VLT Te ke

+ 4351 -

2.1 ¥R Z R EEZE

KBLE G 7= i AN T 46 T X5 e k4T 355
AL FE o 250 A Ak B T2 e L) o S S I b
PRI R E M, AR BE . A AR L 0 B (] AT
AL S 1 TR A s T DLARAIE Y2 50 4k A B D O R R A
WO o I ] R TR 2 #A L 3 . FAh AN
PRI 2 ML 307 IL RIVE ISR, 52 BIEREHR S
VIVESH, AR ) IR A i & 2 ol DR R ) s
HiEtd FEAN R A et R, 1 ELAF 76 W0 B S
SRR R S . B AR K %Y
XA G RHIN PO BB AT BUE AL, 45 B HORE Y
T BE S R0 SE 8, DTTORE AR E 25 1012 gk A7 Ak
P T IR B B R PGS B IR .
Thamboo %41 Uginet 2% 5%} Inconel 718 &
S VR0 I A AR AN B gohn g R R AT TR, TR
508 mm R FE 12 h A B8 &%, i 900 mm %
RZEL 15 min A5 75 2R 74 6 h, FRAKHE L 25 AL
I #EYE F T4 5 S PR T2 R .

¥ 57 40 4k B2 0T DA (R ¥ 46 %5 HE Ctopologically
close-packed, TCP) AHAIAEFfirdL dAH, BFAKZ WA
PO O BT 2 JSE [ e 2 bt — s A K KD,
1T AL BRI BUE L, AT LA T T2 S 80 A
WA, SOEB SRR PR AR e, IR 7R 3
fih LA A SRR BE ST A S R e, $E H
Jai i AT ¥ 5% 5 4 R A 1R 2 S0 A T A A 4 ) S U
Du 2157618 ¥4 Hh /£ PFT (pseudo-front tracking) 7!
AT KWN (Kampmann-Wagner numerical ) 45 7 () 3 7if
R FERE, FHTA SN A B R R AT
T LA 2 2 A () B 5, Tl 45 SR il 6, Bl
J& T A G A AN R R AL G e (1 35 AU A R AT
T RER L,
2.2 FHEIZHEEERE

TEVR T 20T LLD R AR 55 5 Hh (1 BB TR &, 1%
R REdafn 2, IR R g5t 58 8, A BT %
PR & sa ML, SRIZHZE B, B E&MNLRE R
RGHET . TFIIE L I BE B T RIS TP IR T 25k
DUEE ST IS AR, R BLUF PR AR Hh BR R} 0 A8 F A HAOIR
A, TR HARMOU A 2R 55 1) 1 v AR A, R A 2% T
RTS8 w2 E IS P SR AR T AT N
AT THESE, 0t TR R T2 H00 a4
BhAS R A T 45 5 I 25 & R W A 10002 5t R o
TP FH R HEAT 7 RO, A, Feng 5195 JF 18
AR A S AR AT T RE AL, T
PN 2 VIR s S 1 22 ROBE Tl 7792, ai e SE AR 3R ik 1
JITHRE (A 7R 0 7 92 1 TE B 1

2.0

—m—Ascast ——460C
—x—550C 600 C, start
600C,3h ——600°C,24h

o
| .W//:i\k

=
ol
T

©
ol

Mn Content, w/%
=
o

‘/0/ XX
2 4 6 8

a0 X—
Distance form the Dendrite Center/um

o
o

o

Bl 6 X350 B A A B ol B AR Min [ 3% 7K SF A8 1k
T

Fig.6 Predictive variation of the Mn solid solution level from
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Research Progress of Numerical Simulation M ethods for M anufacture Technologies of
Superalloy Turbine Disks

Yao Kaijun®, Yao Zhihao', Wang Qiang?, Dong Jianxin', Zhao Wenyuan', Pan Chonglin®
(1. School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China)
(2. AECC Hunan Aviation Powerplant Research Institute, Zhuzhou 412002, China)

Abstract: The influencing factors in various stages of the turbine disk manufacture have been considered by numerical simulation to
tightly control performance of finished turbine disk. This paper reviewed the developing status of numerical simulation method of
superalloy turbine disks manufacturing way, including seven process stages of vacuum induction melting (VIM), electroslag remelting
(ESR), vacuum arc remelting (VAR), homogenization treatment, cogging, forging and heat treatment, and summarized the modeling
methods and research focus of each stages. Then the research progress of integrated modeling of superalloy products manufacture were
introduced, and our simulation research for the whole manufacture process of turbine disk was illustrated. Finally, the difficulties of
multi-process integrated modeling were analyzed, which may provide references for the whole process integrated simulation of turbine
disks manufacture in the future.
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