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Fig.1 XRD patterns of 0Mo and 2Mo alloys
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Fig.2 SEM microstructures (a, b) and TEM bright-field images (a’, b") of 0Mo (a, a") and 2Mo (b, b’) alloys
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Fig.3 EDS element mappings of 2Mo alloy
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Fig.5 Engineering stress-strain curves of 0Mo and 2Mo alloys
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Fig.6 Macro fracture morphologies of 0Mo (a) and 2Mo (b)

alloys
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Fig.7 SEM fracture morphologies of 0Mo (a) and 2Mo (b) alloys
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Fig.8 TEM bright-field images of 0Mo (a) and 2Mo (b, b’) alloys after the strain of 5%
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Fig.9 TEM bright-field images of 0Mo (a) and 2Mo (b~b') alloys after the strain of 10%
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Effect of Mo on Microstructure and Compression Behavior of
Co-8.8A1-9.8W Superalloy

Xu Yangtao'??, Lv Xin'?*, Ma Tengfei'?, Li Huai'*, Wang Tongchao'~
(1. State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals, Lanzhou University of Technology,
Lanzhou 730050, China)
(2. School of Materials Science and Engineering, Lanzhou University of Technology, Lanzhou 730050, China)
(3. Baiyin Research Institute of Novel Materials, Lanzhou University of Technology, Baiyin 730900, China)

Abstract: To investigate the effect of y' phase morphology and secondary phase on the plastic deformation behavior of Co-8.8A1-9.8W
alloy, Mo was added to prepare the superalloy with different morphology of y’ phase and secondary phase. The microstructure and room
temperature compression behavior of the alloy were studied by XRD, SEM and TEM. The results show that the compressive strength and
plastic deformation ability of Co-8.8A1-9.8W-xMo(x=0, 2) alloys are almost the same, but the hardness of the OMo alloy with cubic y’
phase is significantly higher than that of the 2Mo alloy with spherical y’ phase. The fracture mechanism of 0Mo alloy during compression
is cleavage fracture, but 2Mo alloy is quasi-cleavage fracture. Under the stress, the spherical y' phase is sheared or even destroyed by
dislocations, resulting in fracture and bending deformation, while the cubic y' phase do not change significantly. The W-rich secondary
phases distributed in the 2Mo alloy will hinder the movement of dislocations.

Key words: Co-Al-W alloy; y' phase; secondary phase; dislocation; plastic deformation
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