E51E F12H
2022 4F 124

wEEEMBSIRE
RARE METAL MATERIALS AND ENGINEERING

Vol.51, No.12
December 2022

AgAUPd RS ENE. B AFMEFMHRL
F—HREAR

RFAE, A& 9L, HRE, FNEM, = 44, £ B
(mRRY MR SRR MR TR RO, =/ B9 650500)

OB AR TERESE, B Ag KA RA RN RAERINBYTZE NN, HARE AR, Mk 5 R AAEE
BROGREW R RIS, BFA TR Bt S Tt AgAuPd P& & E N ENLL Ag LR &
ko Wk SQS MM TR Tt AgAuPd & &M AR, FIME —MREETE T AgAuPd P& EENFIE
TR BEVE ST CRPE R S, PR ST . MO AN T A . B AgAuPd PR & & REE ) R
MBEARLF MR g, REFREHERML RS, BAROVEEMERE . PR —EE TR AgAuPd
WA SR TR RO, TR RS Ag B2 AH —EREBESE L.

KBEiR: P AE S, B-MEEE, MR, SQS #EH
FESESES: TG146.372 XHEkFRIRAD: A

YEHS: 1002-185X(2022)12-4533-09

TER R 2RI, S Ag AR A RIFHMHE
FUERE, BEA AR, e, RS
AT P L R K T R AR R IR A a5 T )2 A
U4, R RE Al R R AR B 1 A 9 R
o 3R, LI RGeS, HAESER T RIUL
R, IRAEW L KRB FHik, FR
HEsa . e S Ag B SL A —
ERTRERESCAMME. Au. Pd il Ag A6 T IR &%
HEAEUUMEREABEMES Ag LN EE&ML
TGk . ERTHAMIE S, —He22 XS Ag-Pd &
SR A Ag-4Pd A& &IV KA Ag-8Au-3Pd
H&EMHHAT T IR, Rk T
AR S IL . ITFR, MESHE SIS
W, ZHTEERITREEH I EANIBER . =&
KIS & HA SRl A S 0 R
(=181, ERITT Hh 00 A 4 th N [ Py AR 22 T 32 SR 1
ol AR @S W E R T R AgAuPd RS S
PLIRAG M BE 54 I B8 5 22

SR, — 5l HT AgAuPd TRAEEH Ag.
Au. Pd BT i&)E, @i sein kS E AR
K o — 77 AR M i SL 56 & B A R 1) & e ik
FEdh, MR XE B #0 & AgAuPd & &1 1122 A0
IR . IR FoRE, S PR A2 AR )

i HEA: 2021-12-20

PR AN J) R EE S, A M REHN
0 36 LA S B FH AT T A DG AR o B TF S RS I
FARMRE KR, BT %EZ R (DFT) I E—H
JE BT A5 AR SR T R I TR D b
R 2 5z B e se U200, R o8 — v R E i SR
AgAuPd FUIR A 4 I B TR BB S i H L O S A
BN J1ENERT, R RAE AT 5 A 005 <o 1 4 O i) R
WRTB, HEEs Ag LT REAE —EHH
TR

FIFHSE — MR, @R RCHM—5, R
METHEEER&EF S RAENE, BT
G4, XEEBA R HAT, KT a4
ML LR — RN, T TREN B X T =
G a TR @ 00 5 VA R R YR (SO,
RE LR AT ALl i (VCAYRTH R AT B
(CPA)YZ R Bk () E il WL B L2 (SQS)PH 1. B
BT UK R B, R TR v BE P M ALk
(SQS) Ae % A R Hb 7 1R & M W B A& & R W BT
P, REEIF R SRS SRS, WA TRZ
TR R I TR A G AL B o 18 20

ATAEZEEERIIERT, MERZENS KA
Ak, X R AR K AL o DR P R R 1 v
BE LA M ALl (SQS) AT BRI AgAuPd H1H

HEWB: EXRARBEES (51801179); =FEHEAXBELT (2019ZE001-1, 202002AB080001-6); = F KEAHAMIH (2021Y35)
e RIAY: kIR, 5, 1990 44, Wil, BURERFAL, =mAKEMEISRRESN, =~ B 650500, Hif: 0871-65031124, E-mail:

mszhang@ynu.edu.cn



© 4534 -

G E A R

51 %

BEMRRESEN . @ R EE IS T
ANF 3% AgAuPd H e A 4 1 M TR I 52
1 HEAZE

KRR TFHEZ RIS (DFT) fI5— MR EF
T 34 77 VE ) VASP 2P B TH 5. A8 3 QBRI
T RS E L (GGAY iy PBE AP, iE#%
PAW Py AT B Re T EPY . AT @A E
PSR T AgAuPd G &RENLAM, RAETHAR
B ER R R HERE LSS 4 (SQS) Jrik, @it ATAT
fREGI Mesqs SEAREFPY, MiET—A&F 108 4
JEF (36 NMETF/ICE) WM. SR 350 B2 x0T
HENRIBENL SQS ZMIEALTE 0~100 GPa JEJJE A
AT, . N T TS, BBt E R E N
500 eV, MMBEREDBMH/NT 107 eV B, sthigfFE k.
EAAEMX, HPL Gamma N9 0 ) Monkhorst-Pack
TEERER S K &, MR 5x5x5. fEHETT
B R F, A Blochl B IEM A EIHE T
AgAuPd HJHL T 2% (DOS). fELMFATNIG, HIN
F-RiAETE T AgAuPd & 4RI R B etk
WHRIFER L, H Voigt-Reuss-Hill “F¥MEVEITHET
AgAuPd 12 ffis, G REE (B). YHRE
(G) HRBEE (B) FAt (. RAETHFE I
PP, FIF Debye-Griineisen A& A5 H A A & 77
T AgAuPd & & IR (0p)P" 1,

2 #HR5iE

2.1 LEMFIFREM

FIF SQS LI AgAuPd HR & 411 ik
SitE 1 s, WLLEH, AgAuPd S & &
JCERBENL I, SITCT 0 A, 1 B
AT S BRI d AR S o MRk R A4 RRURD 2 22 2 A (1) 4 B2
S, W TR ANE R )R R AR B RS S
MR S R e e, fEiEE SQS IR M E g i
AR IERE b, R — MR B H A 0~100 GPa R
AgAuPd H0 A A0 AR A, FEd A r=d’,
p=m/V it E L 0~100 GPa FHEMSE ., HH
MBEAIER 19, IR AW 2R 2 F.
HE 2a~2c ATLLEH, BEEEIHEK, AgAuPd
MEESHEBESR (o). BRERZE IR, %5
FE Cp) BWE K, TEBATE B A KA R
2, A R R, WA KRR,

HRG B A 4 TP I R R 2 i B L AR 1)
ML, AT 5 355 T RS A AS UL A A 5 B 5 1) A8
s TR A WA o A e AR A A 5 ) 45 A

Bl 1 AgAuPd H & &M SQS A 451y
Fig.1 SQS model of AgAuPd medium-entropy alloy
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Table 1 Calculated lattice constant, unit cell volume,
density and lattice distortion parameters of
AgAuUPd alloy under different pressures by first
principle calculation
p/GPa  A/X0.1nm V/X0.1°nm*® p/g-em’ Ad
0 4.068 67.320 16.122 0.232
20 3.921 60.280 18.005 0.259
40 3.831 56.208 19.309 0.313
60 3.764 53.329 20.352 0.331
80 3.711 51.104 21.238 0.334
100 3.666 49.293 22.018 0.334
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Table 2 Pressure-dependent elastic constants Cii, Ci2, Ca4, C12—Cas, YOung's modulus (E), bulk modulus (B), shear modulus

(G), Pugh'sratio (B/G), Poisson’s ratio (v), Zener anisotropy factor (47), and universal anisotropy factor (4")

p/GPa  C11/GPa  C/GPa  Cu/GPa C12-C44/GPa E/GPa  B/GPa G/GPa  B/G v A? AY
0 237 92 78 14 193 141 76 1.857 0.272 1.061  0.009
20 386 173 140 33 321 244 126 1.94 0280 1.314  0.095
40 513 247 200 47 436 335 170 1.972 0.283 1.503 0.2055
60 625 313 250 63 533 417 207  2.012 0.287 1.609  0.276
80 729 376 298 78 623 493 241 2.044 0290 1.688  0.337
100 827 436 343 93 706 566 273 2.072 0292 1.759  0.391
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Fig.3 Variations of elastic constants (Cj) (a), elastic moduli (£, B, G) (b), Poisson’s ratio (v) and Pugh’s ratio (B/G) (c), and

anisotropy indexes (d) of AgAuPd medium-entropy alloy with pressure
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Table 3 Calculated longitudinal sound velocity (v), transversal sound velocity (v:), average sound velocity (vm), and Debye

temperature (@p) of AgAuPd medium entropy alloy

-1
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First-Principles Studies on M echanical, Thermodynamic and Electrical Properties
of AgAuPd Medium Entropy Alloy

Zhang Shunmeng, Xiong Kai, Jin Chengchen, Sun Zepeng, Li Wei, Mao Yong

(Materials Genome Institute of School of Materials and Energy, Yunnan University, Kunming 650500, China)

Abstract: Ag bonding wires are widely applied to the field of microelectronic packaging because of their good electrical properties.
However, pure Ag wires possess the disadvantages of low strength and high temperature failure, and can not be used in high power
devices. Therefore, an equal atomic AgAuPd medium entropy alloy as new bonding material was designed to replace pure Ag wires.
In this work, based on the SQS model, the crystal structure of AgAuPd medium entropy alloy was established. The elastic
properties (elastic constants, elastic modulus, shear modulus), thermodynamic properties and electronic structure of AgAuPd
medium entropy alloy under different pressures were calculated by first principle. It can be predicted that AgAuPd medium entropy
alloy has good structural stability, good plasticity, and good conductivity with the increase of the pressure. AgAuPd medium
entropy alloy has great potential to become a bonding material. Through using the first principle to calculate the mechanical,
thermodynamic and electrical properties of AgAuPd medium entropy alloy under different pressures, it has certain theoretical
significance for the development of new Ag base bonding wires.

Key words: medium entropy alloy; first principle; elastic property; SQS model
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