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Fig.1 Grain morphology of zirconium alloy oxidized at 1000 ‘C for 1 h in high temperature steam (a)[35]; temperature curve simulating

the cooling process of LOCA for 1 h (b); per 10 model (c); per 20 model (d); per 30 model (e)
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Coefficient of thermal

o X 9.49+1.09%10°T+4.99x10°T> 12209.244-22.18x107°T+7.71x10°T> 19.244-22.18x10°T+7.71x10°T°
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Fig.3 Node position analyzed in the model and the temperature vs time curves during the cooling process: (al, a2) per 10, (b1, b2) per 20,

and (cl, c2) per 30
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Fig.4 Mises stress distributions of different oxidation degree models during cooling process
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Fig.5 Horizontal strain and vertical strain of different oxidation degree models at the end of cooling
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Fig.9 Stress curves of nodes of a-Zr(O) zone (a); stress at completion of cooling of some nodes (b); positions of some nodes in a-Zr(O)

layer with the oxidation degree model of per 10 (c), per 20 (d), and per 30 (e)
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Fig.10 Stress curves of nodes of matrix zone (a); stress at completion of cooling of some nodes (b); positions of some nodes in matrix

layer with the oxidation degree model of per 10 (c), per 20 (d), and per 30 (e)
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Table2 Constitutive equationsfor oxide film nodes of each

model
o=o¢tog" 00 o n Confidence
Al 11.10 109101  L.I5 0.9825
Bl 7.93 56208  1.26 0.9031
Cl 1.42 19169  0.99 0.9046
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Table3 Constitutive equationsfor a-Zr(O) nodes of each model

o=o¢tas" 00 o n Confidence
B2 17.07 443444 1.77 0.9691
C2 11.43 73219 1.43 0.9216
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Table4 Constitutive equationsfor matrix nodes of each model

o=optag" 00 o n Confidence
A5 16.15 1.02 2.20 0.9874
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Fig.11 Comparisons of constitutive curves of nodes at the center
of matrix and edge nodes in three models (compressive

stress and strain)
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Study on Stress Field Evolution of Zirconium Alloys with Different Oxidation Degrees
During Cooling Process of L oss of Coolant Accident

Hu Lijuan, Chen Xiran, Li Xiaojian, Zhang Honglin, Wang Zixuan, Yao Meiyi, Xie Yaoping
(Institute of Materials, Shanghai University, Shanghai 200072, China)

Abstract: Based on finite element method (FEM), the stress field evolution of zirconium alloys with different oxidation degrees during the
loss of coolant accident (LOCA) process was analyzed in this paper, in which the Zr-4 cladding with three-layer structure after LOCA
process has been modeled, with representing different oxidation degrees of the zirconium alloy cladding by the volume fraction of a-Zr(O).
The simulation of two-step cooling from 1200 °C to 800 °C then to room temperature was carried out. The results show that the stress in
the oxide film is compressive stress, and the stress gradient of oxide film with the decrease of temperature is the largest, which leads to a
larger residual stress at the interface between a-Zr(O) layer and matrix, and the larger the proportion of matrix volume, the smaller the
internal residual stress after cooling. In the low oxidation model, the stress of a-Zr(O) layer is basically unchanged at the end of cooling.
However, there is obvious stress concentration when the oxidation degree is higher. The larger compressive strain has been produced in the
high oxidation degree model, which leads to greater deformation of the matrix when cooling down. According to the analysis on the
corresponding constitutive equations of each structure in different oxidation degree models, it is found that the stress of each layer in the
early stage of quenching decreases first and then increases. There is difference of mechanical properties between the matrix close to the
edge of a-Zr(O) layer and that close to core structure. For the model with higher oxidation degree, the core compressive stress of matrix
structure is higher than that of edge structure under the same strain.
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