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Fig.1 Hole expansion strengthening process of solid mandrel: (a) mounting specimen and (b) specimen placed in the solid mandrel guide
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Fig.2 Hole expansion strengthening process of split mandrel: (a) mounting specimen, (b) specimen placed in the split mandrel guide

section, and (c¢) mounting support rod
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Tablel Mechanical propertiesof 7075 aluminum alloy

Yield strength, Ultimate strength, Elongation,

Type Material Young’s modules, £/GPa Poisson’s ration, x #,/MPa ov/MPa 5%
Solid mandrel W6Mo5Cr4Vv2 218 0.13 - 3500 -
Split mandrel W6Mo5CrdVv2 218 0.13 - 3500 -
7050 aluminum alloy 7050-T7451 70.3 0.33 455 510 10

Mesh refinement
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Fig.3 Three-dimensional finite element simulation model and meshing of mandrel direct hole expansion strengthening: (a) solid mandrel

and (b) split mandrel
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Table2 Chemical composition of 7050 aluminum alloy (/%)

Mg Zn Cu Fe Si Ti Cr Zr Mn Al
1.9-2.6 5.7-6.7 2.0-2.6 0.15 0.12 0.06 0.04 0.08-0.15 0.1 Bal.
ik (B 5b). i EEALB Rmid f, F
oA J# FE 4 10 mm/min.
5 <, FESLRBER B 6 TV E 8], I 100
E D S 'ﬁ r/min, L8N 0.15 mm/r, XM EEFALEEmRL
s JE Y R 47 200 T

K4 7050 554 ik
Fig.4 7050 aluminum alloy specimen: (a) two dimensional

drawing and (b) physical object
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Fig.5 Direct hole expansion strengthening test for mandrel: (a) solid mandrel and (b) split mandrel
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Fig.6 Residual stress measurement point
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direct hole expansion strengthened specimen
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Fig.8 Cloud diagrams of residual stress distribution in hole wall after direct hole expansion strengthening of mandrel: (a) solid mandrel

and (b) split mandrel
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Fig.9 Distributions of residual stress in the hole wall after direct hole expansion strengthening of mandrel: (a, a’) inlet area, (b, b") middle

area, and (c, ¢’) outlet area
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Fig.10 Cloud diagram of residual stress distribution in hole wall after ream machining: (a) solid mandrel and (b) split mandrel
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Fig.11  Distributions of residual stress in hole wall before and after ream machining: (a, a') inlet area, (b, b’) middle area, and

(c, ¢') outlet area
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Fig.13

Cloud diagrams of stress distribution in bore wall of loaded specimen: (a) no expansion strengthening, (b) hole expansion

strengthening of solid mandrel, and (c) hole expansion strengthening of split mandrel
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Fig.14 Distributions of stress distribution in bore wall of loaded specimen: (a) inlet area, (b) middle area, and (c) outlet area
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Fig.16 Fatigue life of specimen
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Fig.17 Macroscopic fracture morphologies of fatigue specimens: (a) no expansion strengthening, (b) hole expansion strengthening of

solid mandrel, and (c) hole expansion strengthening of split mandrel
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Fig.18 Microscopic fracture morphologies of fatigue specimen
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Fatigue Properties of Mandrel Direct Hole Expansion Strengthened 7050
Aluminum Alloy

Liu Fei, Su Honghua, Liang Yongnan, Xu Jivhua, Ding Wenfeng, Wu Bangfu, Shang Xiudong
(College of Mechanical and Electrical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China)

Abstract: In order to investigate the effect of two kinds of mandrel direct hole expansion strengthening methods, i.e. solid mandrel and
split mandrel, on the fatigue properties of 7050 aluminum alloy, a three-dimensional finite element model of 7050 aluminum alloy of
mandrel direct hole expansion strengthening was established; direct hole expansion strengthening test of mandrel was carried out, and hole
wall stress and fatigue properties of specimens without expansion strengthening and with mandrel direct expansion strengthening were
compared and analyzed. The results show that the difference between the maximum residual compressive stress of the hole wall before and
after the ream machining of the mandrel direct hole expansion strengthening specimen is less than 20 MPa. The residual compressive stress
formed in the hole wall of the specimen after the direct hole expansion strengthened of the mandrel can offset the tensile stress generated in
the process of partial loading. The median fatigue life of the solid mandrel hole expansion strengthened specimen is 1.46 times higher than
that of the specimen without expansion strengthening, and the median fatigue life of the split mandrel hole expansion strengthened
specimen is 1.52 times higher than that of the specimen without expansion strengthening. The mandrel direct hole expansion process
reduces the number of fatigue sources, and the fatigue striation spacing in the fatigue crack propagation zone, and thus improves the fatigue
life of specimen.
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