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Tablel Chemical composition of novel Ni-Co-based superalloy (w/%)
C Cr Co w Mo Al Ti Nb+Ta B Zr Ni
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Fig.1  Initial microstructures of the studied superalloy before tensile tests: (a) EBSD map; (b) misorientation distribution; (¢) SEM

image; (d) grain size of secondary y’ particles
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Fig.2 Tensile properties of studied superalloy at different temperatures: (a) engineering stress-strain curves; (b) yield strength, tensile

strength and elongation; (c) Ino-Ine curves; (d) strain hardening exponent
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Fig.3 SEM micrographs (ai;-di) and size distribution of secondary y’ particles (a:-d2) of specimen at different temperatures:

(a1, a2) 25 C; (b1, b2) 650 C; (c1, c2) 700 C; (di, d2) 750 C
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Fig.5 EBSD images (ai-di) and GND maps (az-d2) of tensile fracture of the specimen at different temperatures: (a1, az) 25 C;
(b1, b2) 650 C; (c1, c2) 700 C; (di1, d2) 750 C
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Fig.7 SEM micrographs of the fracture surfaces of the specimens tested at different temperatures: (a) 25 C; (b) 650 C; (c) 700 C;
(d) 750 C
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Fig.14 ' particles atomic rearrangement in the process of twin formation: (a) stack of intact crystals along the direction [111]; (b) CSF
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Table2 Relationship between stacking fault, microtwins and

temperature

Average length of  Average thickness of

Temperature/ ‘C

stacking fault/nm microtwin/nm
25 54.01 -
650 189.35 1.64
700 1250.26 1.89
750 >2500.21 2.47
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Tensile Properties and Defor mation Mechanism of Novel Ni-Co-Based Superalloy

Wang Chen!?, Wang Xingmao??, Yu Hongyao?, Wang Lianbo!, Wang Rui?, Cheng Tijuan?, Guo Caiyu?,
Bi Zhongnan?, Wang Zhanyong'
(1. School of Material Science and Engineering, Shanghai Institute of Technology, Shanghai 201418, China)
(2. Beijing Key Laboratory of Advanced High Temperature Materials, Central Iron and Steel Research Institute, Beijing 100081, China)
(3. State Key Laboratory of Advanced Processing and Recycling of Nonferrous Metals,
Lanzhou University of Technology, Lanzhou 730050, China)

Abstract: The mechanical properties and deformation mechanism of a novel Ni-Co-based superalloys at room temperature (25 °C) and
medium temperature (650, 700 and 750 °C) were studied using SEM, EBSD and TEM. The results show that the yield strength and
elongation of the alloy at room temperature are 1176 MPa and 22.5%, respectively, and present decreasing trend with the temperature
increasing. At room temperature, the main deformation mechanism is that a large number of dislocations slip, and the partial dislocations
shear the y’ particles into isolated stacking faults. When the temperature reaches 650 °C, it is observed that microtwins run through the
secondary y’ particles and y matrix, but it is mainly deformed by continuous stacking faults shearing secondary y' particles and y matrix.
At 700-750 °C, the secondary 9’ particles and the y matrix are sheared simultaneously by continuous stacking faults and microtwins, and
the length of stacking faults and thickness of microtwins increase with the increase in temperature. In the 650-750 °C range, the
mechanism for shearing a primary y’ particles changes from antiphase boundary (APB) to isolated stacking faults. This study discusses the
variation of deformation mechanism with temperature and the formation mechanism of microtwins and stacking fault under medium
temperature conditions. An atom interchange diffusion model for superlattice extrinsic stacking fault (SESF) formation of a/6<112> partial
dislocation shearing 7y’ particles is presented, which explains the formation process of microtwins and provides a reference for the further
development of novel Ni-Co-based superalloys with high performance level.

Key words: Ni-Co-based superalloy; tensile properties; deformation mechanism; stacking faults; microtwins
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