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Fig.1 Optical microstructures and (0002) pole figures with strain along the RD (a) and ND (b) (the twinned regions are indicated as a

bright color)
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Fig.2 Pole figures of the specimen under different temperatures and different compressive strains®”: (a) 100 ‘C, 0%; (b) 100 C, 13.6%;

(c) 230 C, 0%; (d) 230 C, 26.9%
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Fig.3 Crystallographic orientation maps of samples®™>%: (a-b) 2% precompression along RD and 2.5% recompression along TD; (c-d) 2%

precompression along RD and 8% recompression. (0002) pole figures of the selected regions in Fig.3b and Fig.3d are below the

corresponding figures
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Fig.4 Molds for in-plane compression: (a) He et al®*!, (b) Cheng et al®¥, and (c) Kim et al”*”
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Fig.5 EBSD images and {0001} pole figures”®®!: (a) as-received sample, (b) IPC-TR sample, (c) Erichsen tests, and (d) load force-

displacement curves during Erichsen test
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Fig.6 Physical diagram and samples of simple shear device: (a) Huang et al®” and (b) Wang et al™®
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Fig.8 Schematic diagrams of compression-shear methods for Mg alloys!**"): (a) equal channel angular pressing (ECAP); (b) high

pressure torsion (HPT); (c) differential speed rolling (DSR); (d) accumulative roll bonding (ARB); (e) asymmetric extrusion (AE);

(f) extrusion-shearing (ES)
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Fig.10 ECAP technology by Victoria-Hernandez>>>): (a) description of developed ECAP tool; (b) ECAPed sheets at processing
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Research Progress on Shear-Induced Texture Weakening and Property I mprovement of
Magnesium Alloy Thin Sheet

Sun Decong'?, Chen Shuaifeng?, Song Guangsheng', Zhang Shihong®, Song Hongwu®
(1. School of Shenyang Aerospace University, Shenyang 110136, China)
(2. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China)

Abstract: Due to the restriction of strong basal texture, the formability of the thin magnesium alloy sheets at room temperature is insufficient, and
their industrial application is greatly limited. Based on the mechanism of texture weakening of Mg alloy sheets, this paper highlighted the
feasibility and unclear mechanism problems of shear-induced twinning activation to realize texture weakening of magnesium alloy sheets.
Combined with the process development for activating twinning to weaken the texture of magnesium alloy sheets, the features and limations of
shear contained technology in Mg alloy sheets were discussed. Given the undelying mechanism of slip and twinning actviaiton under complex
stress and lacing of technology for shear-induced texture weakening of Mg alloys, an effective Schmid factor and an equal channel angular
bending technology were proposed, and the application of the new calculation theory and shear processing technology in Mg alloy sheets was
presented.

K ey words: magnesium alloy; thin sheet; shear deformation; twining; texture weakening
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