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Fig.2 Particle size distribution of AISi9MglScZr alloy powder
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Fig.3 Illustration of printing strategy (a) and specimen printing (b)
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Fig.4 Optical microscope images of uncorroded SLMed AlSi9Mgl-
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Fig.6  Optical microscope images of corroded SLMed AlSi9MglScZr samples in 0° (a-c) and 90° (d-f) directions under different
preheating temperatures: (a, d) 35 'C, (b, €) 85 C, and (c, f) 135 C
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Fig.7 SEM images of SLMed AISi9MglScZr samples in 0° (a-c) and 90° (d-f) directions under different substrate preheating
temperatures: (a, d) 35 C, (b, ¢) 85 C, and (c, f) 135 C
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Fig.8 Grain orientation distributions of SLMed A1Si9Mg1ScZr samples in 0° (a-c) and 90° (d-f) directions under different preheating

temperatures: (a, d) 35 C, (b, ) 85 °C, and (c, ) 135 C
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Fig.17 Fracture SEM images of SLMed AlSi9MglScZr samples in 0° (a-c) and 90° (d-f) directions with different substrate preheating
temperatures: (a, d) 35 C, (b, ¢) 85 C, and (¢, f) 135 C
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Fig.18 Fracture morphology and EDS mappings of SLMed AlSi9Mg1ScZr samples at substrate preheating temperature of 135 C
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Effect of Substrate Preheating Temperature on Microstructure and M echanical
Properties of AISIOMglScZr Alloy Prepared by Selective Laser Melting

Zhang Can'?, Wang Guowei', Zhu Jingxi'?, Wang Lili', Shen Xianfeng', Ye Han?, Wang Chao', Huang Shuke!'
(1. Institute of Machinery Manufacturing Technology, China Academy of Engineering Physics, Mianyang 621900, China)
(2. School of Advanced Manufacturing, Nanchang University, Nanchang 330031, China)

Abstract: The effects of substrate preheating temperature on the microstructure and mechanical properties of AISi9Mg1ScZr alloy samples
prepared by selective laser melting (SLM) were investigated. SLM samples were prepared at three different substrate preheating
temperatures of 35, 85, and 135 °C, and subjected to microstructure observation and property testing. The results show that the substrate
preheating temperature set to 135 °C causes the in-situ aging effect of the alloy during the printing process due to the combined effect of
the substrate preheating temperature and laser scanning heat input, which promotes the precipitation of elements from the supersaturated
solid solution while retaining fine dendrites and Si lattices. Compared with the sample with the substrate preheated at 35 °C, the nanoscale
Mg-Si and Si phases are precipitated significantly more in the a-Al matrix and dendrite boundaries, which improves the strength; however,
the precipitation of the micron-scale Fe-rich phase has a negative effect on plasticity. At a substrate preheating temperature setting of
135 °C, the prepared AlSi9MglScZr alloy exhibits a yield strength of 360 MPa, a tensile strength of 502 MPa, and an elongation of 7% in
the 0° direction, and a yield strength of 331 MPa, a tensile strength of 511 MPa, and an elongation of 5.4% in the 90° direction. The
microstructure of AISi9MglScZr alloy prepared by SLM is improved by increasing the substrate preheating temperature and in-situ aging
of the SLM samples is achieved during SLM, by which the residual stress is significantly reduced and ultra-high strength A1Si9MglScZr
alloy samples can be obtained without subsequent heat treatment.
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