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Table 2 Variance analysis of response surface constitutive

equation

Mean
square

Source  Sum of squares Df F-value P-value

1.016x10° 9 11287.38 133.99 0.0001
A-

temperature 7106.05 1 7106.05 84.36 0.0008
B-strain rate 92646.44 1 92646.44 1099.82 <0.0001
C-strain 290.34 1 290.34 3.45 0.1369
AB 555.04 1 555.04 6.59 0.0622
AC 30.25 1 30.25 0.3591 0.5813
BC 308.38 1 308.38 3.66 0.1283
A? 156.67 1 156.67 1.86 0.2443
B2 581.55 1 581.55 6.90 0.0583
C? 74.00 1 74.00 0.8785 0.4017
Residual 336.95 4 84.24 -
Cor total 1.019x10° 13
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Constitutive Model of TB15 Titanium Alloy Based on Physics and Meta-modeling

Wu Xuanxuan', Dong Xianjuan', Xu Yong?, Lu Shigiang', Tu Zeli!, Wang Yuhang'
(1. School of Aeronautical Manufacturing Engineering, Nanchang Hangkong University, Nanchang 330063, China)
(2. School of General Aviation, Nanchang Hangkong University, Nanchang 330063, China)

Abstract: The Gleeble-3800 thermal simulator was used to conduct isothermal constant strain rate thermal compression tests on
TB15 titanium alloy to study its thermal deformation behavior under deformation temperatures of 810-930 °C, strain rate of
0.001-10-s"! and height depression of 60%; three constitutive relationship models, including physics, support vector regression
(SVR) and response surface, were developed to predict the flow stresses of TB15 titanium alloy and the prediction accuracy of the
three constitutive models was compared. The results show that the flow stress of TB15 titanium alloy decreases with the decrease
in the strain rate and the increase in deformation temperature, and the change of peak stress is more sensitive to the strain rate; the
correlation coefficient R of physics, SVR and response surface constitutive models is all greater than 0.98, but the R value of
response surface constitutive model reaches 0.993, and the frequency of the relative error of the response surface constitutive
models £5% of the predicted value reaches 67.9%, which is greater than that of the physics constitutive model (58.6%). The
significance test value P<0.0001 of the constructed response surface constitutive model is also obtained by ANOVA, indicating
that the regression relationship of the flow stress predicted by the response surface constitutive model with the deformation
temperature, strain rate and strain is significant and has higher accuracy than the physics and SVR constitutive models, which can
better predict the flow stress of TB15 titanium alloy.

Key words: TB15 titanium alloy; constitutive model; response surface; significance test value
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