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Fig.1 Molecular dynamics model construction with precipitation

phase
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Molecular Dynamics Simulation of Effect of O Phase on Tensile Properties of B2
Matrix Phasein Ti2AINDb Alloy

Li Ping, Ding Ruidong, Zhang Yongqiang, Shi Chengfeng, Zhi Qiang, Xue Kemin
(School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009, China)

Abstract: The effect of different number densities of O phase on the mechanical properties of the matrix B2 phase in Ti2AINb alloy was
investigated based on molecular dynamics. The results show that the yield strength and plasticity of the B2 phase are improved when the
O phase is contained. This is because the precipitated phase hinders the start of the slip system in the matrix during the tensile
deformation process, thereby improving the plastic deformation resistance of the B2 phase of the matrix. It is found that the improvement
of material plasticity is mainly related to the release of internal stress, in which the release of internal stress by the B2 phase through
martensitic phase transition is dominant, and the release of internal stress by play a less prominent role. When the matrix B2 phase
contains the O phase, the hindering effect of O phase on dislocation will lead to stress concentration, thereby inducing martensitic phase
transition of a large number of bec structures, and the degree of stress concentration in this process decreases, delaying the growth of pore
nuclei. In addition, since the O phase is a ductile phase, the growth of holes at the boundary between the O phase and the B2 phase is
inhibited, so that the plasticity and toughness of Ti2AINb alloy are greatly improved. And with the increase in the number density of
precipitated phases, the yield strength and yield strain of the material decrease, but its strength and plasticity are still improved compared
with those without the O phase. This is because with the increase in O phase number density, the proportion of martensitic phase transition
of the matrix atoms decreases during the deformation process, so the release degree of the stress concentration by the phase transition
decreases, and the generation and expansion rate of the holes increase, with makes it more prone for the material to fracture failure.

Key words: molecular dynamics; Ti2AINb; O phase number density; martensitic phase transition
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