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摘 要：为了研究 P 在超级铁素体不锈钢中的作用，基于 S44660 钢成分，调整了 P 的质量分数，控制 P 含量分别为

0.004%、0.009%、0.033%以及 0.055% 4 种试验钢，研究 P 含量的变化对铸造 S44660 超级铁素体不锈钢组织与力学性

能的影响。结果表明：在 P 含量（质量分数）为 0.004%、0.009%和 0.033%时，P 含量增加可以扩大 S44660 超级铁素

体不锈钢的结晶温度范围（ΔT），减小晶粒尺寸并提升等轴晶率，但当 P 含量为 0.055%时，晶粒尺寸反而增大，等轴

晶率下降；适量的 P 可以提高材料的室温拉伸性能以及硬度；P 对材料冲击韧性具有双重作用，一方面 P 对晶粒有细化

作用，进而提升材料的冲击吸收功；另一方面，过量的 P 会促使其在晶界处偏聚，进而影响材料的韧性。
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S44660 超级铁素体不锈钢具有较高的 Cr、Mo 含

量，又将 C、N 含量控制在极低的水平，与普通的铁

素体不锈钢相比添加了 Ni，提高了其韧脆转变温度，

因此表现出极为优异的耐氯化物应力腐蚀开裂、耐全

面和局部腐蚀性能，且具有热膨胀系数小、热导率高、

延展性好、加工性能好和成本低等特点，可以取代应

用于高耐蚀环境中的钛管、铜管、超级奥氏体不锈钢、

超级双相不锈钢等耐蚀合金，在氯碱行业、沿海基建、

滨海电站等领域有着广阔的应用前景[1-4]。然而 S44660
超级铁素体不锈钢在制造复杂结构构件如阀体的时候，

会由于其结晶温度范围（ΔT）窄，导致在凝固过程中

由于钢液的补缩能力不足而产生疏松、缩孔等缺陷；

并且通过铸造生产的铸件，其晶粒粗大且通过热处理

的方法细化晶粒较为困难，上述问题严重限制了

S44660 超级铁素体不锈钢的生产及应用[5-7]。

P 具有很强的固溶强化作用，可以使钢的强度、

硬度得到显著的提升；而且 P 能够改善液态铁水、钢

液的流动性[8]，又能使固、液相线温差增大，扩大结

晶温度范围（ΔT），使铸件成型性能更好。但是 P 元

素具有偏析和偏聚行为 [9-16]，易在晶界处富集，在降

低钢的塑、韧性的同时，又严重影响材料的冲击性能，

导致其在钢铁材料中的应用受到限制[17-20]。因此，如

何发挥其强化性能并抑制其有害作用具有很广阔的研

究前景。

本研究针对 S44660 超级铁素体不锈钢在铸造过

程中固、液相线温差小、钢液补缩能力差等问题，调

整 S44660 超级铁素体不锈钢中 P 含量，研究了不同 P
含量对 S44660 超级铁素体不锈钢晶粒大小、夹杂物分

布和力学性能的影响，并对其作用机制进行分析。

1 实 验

本实验所用的材料为不同 P 含量的 S44660 超级

铁素体不锈钢，其化学成分如表 1 所示，将 S44660
钢钢锭在 VIM-F25 型真空感应炉中进行重熔，采用熔
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表 1 试验钢的化学成分

Table 1 Chemical composition of the tested steels (ω/%)

Sample No. Cr Mo Ni C N O S P Al Si Fe
1# 26-28 2-4 2-4 0.0018 0.015 0.019 0.0032 0.004 0.003 0.11 Bal.
2# 26-28 2-4 2-4 0.0014 0.014 0.016 0.0033 0.009 0.003 0.13 Bal.
3# 26-28 2-4 2-4 0.001 0.014 0.015 0.0031 0.033 0.003 0.12 Bal.
4# 26-28 2-4 2-4 0.001 0.014 0.013 0.0034 0.055 0.003 0.13 Bal.

模铸造的方式，将钢液注入预制好的型壳中，获得不同 P
含量的成型试棒，试棒的标距尺寸为Φ5 mm×25 mm，如

图 1 所示。

用线切割将整体纵剖后的截面进行粗磨、细磨以

及抛光后，用 30 mL HCl+10 mL HNO3+5 g FeCl3 溶液

进行化学腐蚀，使用体视显微镜对样品进行宏观组织

观察，并统计晶粒尺寸，针对每个试样分别随机选取

10 个视场，并统计其平均值。使用 FEI Inspect F50 型

场发射电子显微镜（SEM+EDS）对夹杂物进行形貌观

察及成分分析。使用 Image-Pro Plus6.0 软件对夹杂物

平均面积分数、夹杂物尺寸进行统计分析。使用

STA449F3 超高温综合热分析仪在氩气气氛下，按照

GB/T 1425-2021《贵金属及其合金熔化温度范围的测

定》的检测标准进行 DSC 试验，升降温速率为

10 ℃/min，测量样品的凝固特征温度。用 KB30SRFA
全自动显微维氏硬度计进行硬度测量，载荷为 5 kg，
保载时间为 15 s，每个样品随机打 10 个点后取平均值

为测试值。采用 SANS-ZBC452-C 型冲击试验机按照

GB/T 229-2020《金属材料夏比摆锤冲击试验方法》在

室温下进行冲击试验，实验样品规格如图 2 所示；使

用 INSTRON 5982 万能试验机对不同 P 含量的拉伸试

棒进行试验，并使用扫描电镜（SEM）对拉伸和冲击

断口形貌进行观察。利用 Origin 软件对所得数据进行

统计分析和曲线拟合。

2 实验结果

2.1 铸态宏观组织

图 1 室温拉伸试棒尺寸

Fig.1 Dimension of tensile test bar at room temperature

图 2 U 型冲击试样尺寸

Fig.2 Size of U-impact specimens

图 3 为不同 P 含量试验钢的整体纵剖后截面的宏

观组织。可以看出，1#试样钢拉伸段的纵剖截面有大

量的长条晶且晶粒尺寸较大，均匀性较低，平均晶粒

尺寸约为 1.11 mm。2#试验钢拉伸段中柱状晶消失，

组织均匀性提高，晶粒尺寸也有所降低，约为 0.89 mm；

3#试验钢的平均晶粒尺寸略微增加，达到 0.94 mm 左

右，拉伸段仍为较均匀的等轴晶；4#试验钢的平均尺

寸约为 1.04 mm，较 2#、3#试验钢的尺寸均略有增加，

图 3 不同 P 含量的试验钢的宏观组织

Fig.3 Macrostructures of test steels with different P contents:

(a) 1#, (b) 2#, (c) 3#, and (d) 4#
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在拉伸段又出现了明显的柱状晶。结果表明，P 含量

的微量增加，可以消除试验钢铸态组织中的长条晶，

同时可以细化晶粒，提升等轴晶率。

2.2 铸态组织中的析出物

本试验采用的 S44660 超级铁素体不锈钢中 C、N
含量较低，因而未在其中发现碳氮化物，第二相大多

为氧化夹杂物。图 4、图 5 分别为 P 含量对试验钢中

氧化夹杂物影响的面积比统计图和夹杂物分布的

SEM 照片。当 P 含量为 0.004%时，夹杂物含量约为

0.24%，其中尺寸大于 5 μm 的大尺寸夹杂物含量为

0.17%，随着 P 含量的增加，2#、3#、4#钢中夹杂物

含量分别减少了 8.3%、29.17%、20.83%；相比于 1#
试样，大于 5 μm 的大尺寸夹杂在 2#、3#、4#试样中

均有降低，分别下降了 5.9%、29.4%和 23.5%。P 含量为

0.033%（质量分数）时，试验钢中夹杂物含量以及大于

5 μm 的夹杂含量均达到最低，为 0.17%和 0.12%。可见，

随着 4 种试验钢中 P 含量的不断提高，不仅使试验钢中

夹杂物的平均含量下降，而且减小了夹杂物的尺寸。

试验钢中典型夹杂物形貌如图 6 所示，4 种试验

钢中的夹杂物主要为形状不规则、呈方形且带有棱角

的富 Cr 氧化物，其尺寸为 4~5 μm，以及球形的富 Al、
Si 氧化物，其尺寸为 5 μm。

2.3 DSC 凝固特征温度

图 7 为不同 P 含量 S44660 钢的 DSC 曲线。图 7a
~7h 分别为 1#~4#钢的升降温曲线。根据 DSC 曲线可

知，试验所用的钢在整个升降温过程中只有 1 个特征

温度点，即试验钢的熔化和凝固，并未有相变的发生。

4 种钢的固、液相线温度如图 8 所示，随着 P 含量的

增加，结晶温度范围（ΔT）也由 20 ℃扩大到 28 ℃。

2.4 力学性能

2.4.1 室温拉伸性能

图 9、图 10 分别为不同 P 含量试验钢的室温拉伸

性能。1#钢屈服强度σs 约为 472 MPa，抗拉强度σb 达

到 640 MPa 左右；2#钢屈服强度σs 约为 467 MPa，抗

拉强度σb达到661 MPa左右；3#钢屈服强度σs约为408 MPa，
抗拉强度σb达到 663 MPa；4#钢屈服强度σs约为 475 MPa，
抗拉强度σb 达到 668 MPa 左右。可以看出，随着 P 含

量的增加，试验钢的抗拉强度σb 与屈服强度σs 均增大，

只是 3#钢的屈服强度σs 有所降低。由图 10 可以看出，

2#钢、3#钢的延伸率相比 1#钢均有所增加，分别达到

24%及 23%，4#钢的断后延伸率以及收缩率在 4 种试

图 4 试验钢中夹杂物含量

Fig.4 Content of inclusions in test steels

图 5 4 种试验钢中典型夹杂物分布的 SEM 照片

Fig.5 SEM images of typical inclusion distribution in four test steels: (a) 1#, (b) 2#, (c) 3#, and (d) 4#

图 6 试验钢中典型夹杂物的 SEM 照片及相应箭头标注区域的 EDS 分析结果

Fig.6 SEM images and the corresponding EDS analysis results of arrow marked positions of typical inclusions of test steels: (a) 1#, (b) 2#,

(c) 3#, and (d) 4#

a b c dElement ω/% at%
O 16.8 36.97
Cr 43.46 29.43
Fe 29.17 20.16
Al 3.67 4.79
Si 6.90 8.65

Element ω/% at%
O 45.67 38.38
Cr 52.50 39.58
Fe 25.16 41.46

Element ω/% at%
O 3.57 11.3
Cr 28.83 28.09
Fe 67.6 60.61

Element ω/% at%
O 77.07 85.42
S 1.29 0.71
Al 7.58 4.98
Si 14.06 8.89

5 µm
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图 7 4 种试验钢的 DSC 曲线

Fig.7 DSC curves of four test steels: (a-b) 1#, (c-d) 2#, (e-f) 3#, and (g-h) 4#

图 8 不同 P 含量试验钢的固液温度和温度区间

Fig.8 Solid/liquid temperature and temperature range of test

steels with different P contents

验钢中均为最低，分别为 22%和 51.5%。

图 11 为不同 P 含量的试验钢的拉伸断口形貌。当

P 含量为 0.004%时，试验钢断口形貌由韧窝及舌状花

样组成，但韧窝的直径较大，可判断其为混合型断裂

（图 11a）；当 P 含量为 0.009%时，断口形成的韧窝

相比于 1#断口更为密集且尺寸有所减小，但直径仍较

大且深度较浅（图 11b）；P 含量为 0.033%时，断口

形貌为密集的等轴韧窝，且韧窝深度较浅，其断裂方

式为微孔聚集型断裂（图 11c）；P 含量达到 0.055%
时，其韧窝密度大量减少，尺寸变大，深度也较浅

（图 11d）。

2.4.2 硬度

硬度是材料抵抗另一种硬质材料压入的能力（材

料抵抗局部变形，尤其塑性变形的能力）。通过硬度

试验可以反映金属材料在不同化学成分、组织结构以

图 9 不同 P 含量的试验钢的屈服强度 σs、抗拉强度 σb 和屈

强比

Fig.9 Yield strength, tensile strength and yield ratio of test steels

with different P contents

图 10 不同 P 含量的试验钢的断后延伸率和断面收缩率

Fig.10 Elongation and section shrinkage of the test steels with

different P contents after fracture

及热处理工艺下性能的差异，材料的强度越高，塑性

变形抗力越高。图 12 为不同 P 含量试验钢的硬度值，
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在 P含量为 0.004%时，硬度（HV）值约为 2461.76 MPa，
2#、3#、4#钢的硬度（HV）值分别为 2695.98、2559.76、
2635.22 MPa。可见 P 含量的增加，使 S44660 钢的硬

度均有增加，P 含量为 0.009%时，硬度值达到最高。

2.4.3 冲击性能

为了研究 P 含量对 S44660 钢室温韧脆性的影响，

对不同 P 含量的试验钢进行冲击试验，图 13 为室温条

件下不同 P 含量样品的冲击吸收功。由图可知，在室

温条件下，1#、2#、3#、4#的冲击吸收功分别为 17、
22、13.6、9.05 J。可见 2#试样比 1#试样的冲击吸收

功提高了 29.41%，但 3#、4#试样的冲击吸收功随着 P
含量的增加而下降。

图 14 为不同 P 含量的试验钢在室温条件下的

冲击断口形貌。可以看出 4 种试样均存在韧窝以及

解理台阶，呈微孔聚集和穿晶解理共存的混合型断

裂（见图 14a-14d）。如图 14f 所示，随着 P 含量

提高到 0.009%时，相比于 1#试样，其冲击试样撕

裂脊处韧窝数量增多，且尺寸较小；如图 14g、14h
所示，随 P 含量增加到 0.033%、0.055%时，试样

的撕裂脊高度逐渐减小，韧窝面积减小。结合图 13
和图 14 的实验结果可得，适量的提高 S44660 超级

铁素体不锈钢中 P 含量可以提高材料的冲击吸收功，

而过量的 P 会恶化材料的韧性。

3 分析与讨论

对于多晶材料，晶粒大小对材料性能有重要影响，

例如金属材料，其强度、硬度、韧性以及冲击性能均

会随晶粒细化得到提升。然而铸件材料的晶粒尺寸一

般都比较大，通常为了细化晶粒会采用以下方法：增

加过冷度、在材料中添加形核剂以及震动促进形核。

而拓宽材料凝固过程中的结晶温度范围（ΔT）也可以

对晶粒细化产生影响，经 DSC 结果发现，随 P 含量的

增加，2#、3#、4#的结晶温度范围（ΔT）均有增大。

相关研究表明[21]，在不考虑异质形核核心以及冷却速

度等因素的影响时发现：合金的晶粒尺寸会随着结晶

温度范围（ΔT）的增大而减小。随着结晶温度范围（ΔT）
变宽，凝固过程中，枝晶根部会变细，其被温度起伏

而溶解的几率会增大。另外，结晶温度范围（ΔT）变

宽，枝晶尖端前方的过冷区加大，熔断的枝晶便会在

过冷区内成为新的形核核心。因此，虽然 P 的加入没

有出现高于液相线温度的析出相，但它拓宽了试验钢

的结晶温度范围（ΔT）[8]，因此会对材料晶粒细化产

生影响 [22]。同时，发现 2#和 3#钢的等轴晶比率也有

相应提升。根据等轴晶比率增大机制，柱状晶前沿出

现等轴晶的条件为：

 
3 1/2

1/3 N 0
0

C

1 8 1T C vG n Γm k
T D


               

＜
（1）

式中，G 为柱状晶生长前沿枝晶尖端的温度梯度

（K/m）；η为柱状晶向等轴晶转变系数；n 为单位

体积中可供非均匀形核的衬底粒子数（m-3）；ΔTN

为非均匀形核的过冷度（K）； CT 为柱状晶前沿

液相的过冷度（K）；v 为生长速度（m/s）；Γ为
Gibbs-Thomson 系数 (m·K)；C0 为合金成分（%）；

m 为液相线斜率；k0 为溶质分配系数；D 为溶质扩

散系数（m2/s）。

在单相合金中，结晶温度范围ΔT=-mC0(1－k0)/k0，

它代表在稳定生长条件下平坦的固液界面前沿的过冷

度，因此式（1）可写成：

3 1/ 2
1/3 N 0

C

81 T k TvG n
T D


              

＜
（2）

由公式(1)可知，随着 P 含量的增加，结晶温度范

围（ΔT）会增大，根据成分过冷理论，ΔT 的增大会

加深熔体的成分过冷，使式（2）中右侧晶体的生长速

度 v增大，促进中心等轴区形成。

图 11 不同 P 含量试验钢室温拉伸后断口形貌

Fig.11 Tensile fracture morphologies of test steels with different P contents at room temperature: (a) 0.004%, (b) 0.009%, (c) 0.033%,

and (d) 0.055%
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图 12 不同 P 含量试验钢的硬度值

Fig. 12 Hardness of test steels with different P contents

图 13 不同 P 含量试验钢室温条件下的冲击能

Fig.13 Impact energy of test steels with different P contents at

room temperature

由位错理论可知，在多晶材料中，晶界数量以及第

二相的形态、分布和含量均可以阻碍位错运动，从而对

材料的力学性能产生影响[23]。材料的屈服强度σs与平均晶

粒尺寸 d之间可用 Hall-Petch 公式[24]来表示：

1/2
s 0 Kd    （3）

通过公式（3）可知，对于同种材料，随着晶粒尺寸 d
的减小，屈服强度σs 也应逐渐增大，然而本实验中随

着 P 含量的增加，2#、3#钢的屈服强度σs 相比于 1#钢
均有下降，由 472 MPa 下降至 467 和 408 MPa，出现

与公式相反的情况。这种现象的产生主要与基体中第

二相的变化相关。随着 P 含量增加，基体中带有棱角

的方形或不规则形状的富 Cr 氧化物的数量和尺寸减

少，而形状为规则圆形且与基体紧密结合的富 Al、Si
氧化物占大多数，这是由于 P 在钢液中不与其他元素

发生反应，在凝固过程中会与液态钢水中的 O 结合生

成 P2O5[29-32]
，使材料中 O 元素含量减少，并间接性使

材料中的氧化物含量减少，而 Al 与 O 的结合力大于 P
与 O 的结合力，因此富 Al 氧化物的数量所受影响较

小。在基体受外应力时，其中运动位错会遇到不可形

变的脆硬粒子，位错线将绕其产生弯曲，随着外应力

的增大，位错线产生的弯曲也会加剧，会使第二相周

围产生的位错线相遇并产生抵消，其周围也会留下位错

环，未抵消的部分会绕过第二相继续前进。以这种方式

运动的位错，每留下一个位错环均会对位错源产生

一个反向的应力，因而只有外应力更大才能克服此

反向应力，因此会导致材料的屈服强度σs 提高 [25-28]。

由位错理论可知，迫使位错线弯曲到半径 R 所需切

应力τ为：

b
2
G
R

  （4）

式中，G为 S44660 钢的切变模量，b为伯氏矢量。由

公式（4）可知在基体中如果第二相粒子过多，粒子

图 14 不同 P 含量试样在室温条件下的冲击断口形貌

Fig.14 Impact fracture morphologies of samples with different P contents at room temperature: (a, e) 1#, (b, f) 2#, (c, g) 3#, and (d, h) 4#
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间距 2R则会变小，导致τ值增加，其产生的第二相强

化效果更明显。同时第二相的形状也会对第二相强化

作用产生影响，不规则的块状质点对位错运动的影响

效果更明显，因而导致其屈服强度σs 大于球状第二相

的材料。由图 4 可知，3#钢的第二相含量在 4 种钢中

含量最低，为 0.17%，因而其第二相强化效果照 1#、
2#钢更小，导致其屈服强度σs 低于 1#、2#钢。

对钢而言，P 元素能产生较强的固溶强化效果，

进而可以提高钢的强度，但是随着 P 含量的增加，韧

脆转变温度也会提高，并对钢的韧性造成影响。其主

要原因是 P 元素会在在晶界偏聚并降低材料中的晶界

结合力，增加钢的脆性[16-19]。而偏聚元素对晶界的直

接作用在于：晶界能、晶界扩散和晶界结合力[33]。本

实验结果表明：随着 P 含量的增加，室温冲击吸收功

呈现先增高后降低的趋势，且冲击断口均呈穿晶解理

断裂，证明 P 会增加材料的脆性。

4 结 论

1）P 能够扩大固、液相线温度区间，使结晶温度

范围（ΔT）增大，适量的 P 可以细化铸态 S44660 超

级铁素体不锈钢的晶粒。

2）随着 P 含量的增加，S44660 钢中夹杂含量略

有降低，P 含量为 0.033%（质量分数）时，试验钢中

夹杂物含量以及大于 5 μm 的夹杂含量均达到最低，为

0.17%和 0.12%。

3）适量增加 S44660 超级铁素体不锈钢中 P 含量，

可以提高基体的屈服强度σs、抗拉强度σb 以及硬度。

4）P 对 S44660 超级铁素体不锈钢的室温冲击性

能具有双重作用，一方面适量的 P 会细化晶粒并由于

其具有固溶强化作用，使材料的韧性得到提升；另一

方面，由于 P 易在晶界处偏聚，进而恶化材料的韧性，

降低材料的冲击性能。
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Effects of P on Microstructure and Mechanical Properties of Cast S44660 Super Ferritic
Stainless Steel
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Wang Zengrui 4, Xu Xinyao5, Zheng Zhi2
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(2. Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China)
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Abstract: In order to study the role of P in super ferritic stainless steel, based on the composition of S44660 steel, the mass fraction of P

was adjusted, and the P content was controlled as 0.004wt%, 0.009wt%, 0.033wt% and 0.055wt%. The effect of P content change on the

microstructure and mechanical properties of cast S44660 super ferritic stainless steel was studied. The results show that P can expand the

crystallization temperature range (ΔT), reduce the grain size and increase the equiaxed crystal rate when the P content is 0.009wt% and

0.033wt%. But when the P content is 0.055wt%, the grain size increases and the equiaxed crystal rate decreases. The appropriate amount of

P can improve the room temperature tensile properties and hardness of the material. P has a dual effect on the impact toughness of the

material. On the one hand, P has a refinement effect on the grain, thereby improving the impact absorption work of the material; on the

other hand, excess P will promote its deflection at grain boundaries, which in turn affects the toughness of the material.
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