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#5931 2 AR BAREIXIE X HOCIEAL Ti-6A1-4V & SR I 57 ML AE RO R IR

* 2509 -

Ae/2=0.6%

As-built

Annealed

)
2

23 A

= S

o = g

5.8 i

O3 X, P
=3 condary cracks

2100200 pm,

o0
—
o
S5

A&/2=0.8%

Secondary cracks. |
200-pm |7

200-um

K12 SLM Ti-6Al1-4V & < {1 95 55 W 1 808 Jjg X
Fig.12 Crack propagation regions of SLM Ti-6Al-4V alloys after low cycle fatigue process

A 2 T ) RFAE o« BEE BRI = 2 Ae/2=0.8%.
1.2%, RGYFRIX 58 4 548y i K& 135 204 i
MITESRRRAE,  [F) I A0 5% 30 K i 1) IR GURFE, K
I S AR i 38 3G, RS IR I R TR
MR, TR T ERERu IR SR ER
DA HRAE £57 350 W 498 2R A A T 25 7 9 5 W 43 R vh R A7
THERMBEYATE, Wi e 5y 5 dr .

BAETE Ae/2=0.4%- 0.6%I % 57 4 4 J@ X R 3
NIRFG M R ERE, 5 SLM fEH AL HUR S H
Bl AHEE T SLM Ti-6Al1-4V &4, AR ELER Ik
RO E R Z . KPRk, AR Ti-6A1-4V 4
RS HL, VIE o RSN 20~30 pm, KA o
RSP 1~2 pm, HJERGEEHE ST RITFEED o
BRI G LY TR T Ry o B T7 A R AE R
¥, MR b 51 = R Re, Btk IRE o iRk
FHRSF /T SLMGB K4S E R # A BRAS AR 2% o RS S
ARG 51K ERGUE S 7= A ZIREL, iR

BZNATLRE, (EAKS RS 518 T FAR 9% 57 11 R AR
FIa#& . 18 Ae/2=0.8%. 1.2%I, #fF P o ML
BIVMAAZR AR, 2ol RXIEHE L ARENY S
FRAE, RIS RAF SO BEidE— ok, 43 9
W% 57 ERGURG I N S

B 1345 H T 3 FoiRZS SLM Ti-6A1-4V & & B E
)95 55 L Je X R AEE ) s e 4, 1T LA H TR
ALES R T Y5 /ANTE, BTSN AE 2%
PEFIVCEAT AW, 2807 4 Ja R Pt k& A= i
o BKE . TS RA B AR ) E R SEFIR
JEE 35 I8 I A% R P 184 DRI 184 DR, o 2 (1) 28 P 7 AR
B8 22 30 o 75 B A T S R rp s T 00 42 31 5 5 o
2 B WA AV AR IR E = A AN T ol =R ey F o
JRS it A% G PR 38 KT 18 K, U BH 45 o A ES 2 91 1 A
o RN R ER . RIGHR RSP o
FHRSE /N T4 0 A S i o MERSE, A B8 R
FHLG G B BB, 9% 57 3 R o 51 L i 1 3R A2 T4 B AH



* 2510

Wity EmA RS TR

%53 K

Ae/2=0.4%

—

Ae/2=0.6%

Annealed

Cyclic
heat treated

Ae/2=0.8% Ae/2=1.2%

Kl 13 SLM Ti-6A1-4V & 4 i 3 55 W7 #0853
Fig.13 Fatigue fracture morphologies of dimples of SLM Ti-6Al1-4V alloys after low cycle fatigue process

WM. £ 3 FRZ SLM Ti-6Al-4V &4,
A FRAE A [F) B AR R T A TR KT R () 55 RRAE

HE— B M Ae2=08% K 3 FiRZE SLM
Ti-6A1-4V HALEE 454, Nl 14 Fros, W LLE
DURRESTE o IR0 ZEF T IR o/B FHF-FAT HEFI I AL

500 nm|

e, W TR AR BN TE RN, AUHE 3 2
o WRARIE R T iz s, DU &M 5147, 23
T TS BRI o [ ANy 25 21 T e i i e X DL o o AR
AT AR, TR BRI A o T

il 15 Fios, AEIR KA RS o AR AR WL SR 21

Bl 14 PR SLM Ti-6Al-4V 44 TEM B
Fig.14 TEM micrographs of as-built SLM Ti-6Al-4V alloy: (a) martensite o', (b) dislocations in martensite o’ tips, and (c) parallel

dislocations in the tips
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Fig.15 TEM micrographs of annealed SLM Ti-6A1-4V alloy: (a) lath a, (b) parallel dislocations in lath a, and (c) dislocation tangle in

lath o
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Fig.16 TEM micrographs of cyclic heat treated SLM Ti-6Al1-4V alloy: (a) lath a, (b) equiaxed a, (c) dislocation tangle in lath a, and

(d) dislocation tangle in equiaxed a
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Effects of Heat Treatment on Low Cycle Fatigue Properties of Selective Laser M elting
Ti-6Al-4V Alloy

Li Dian"?, Chen Jingl, Tan Hua', Yao Bo', Zhang Siyul, Hao Zhiwei', Lin Xin'
(1. School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an 710072, China)
(2. Northwest Institute for Nonferrous Metal Research, Xi’an 710016, China)

Abstract: In order to improve the low cycle fatigue property of selective laser melting Ti-6Al-4V alloy, the effects of heat treatment on the
microstructure and properties of selective laser melting Ti-6Al1-4V alloy were studied by OM, SEM, TEM, room temperature tensile and
low cycle fatigue tests. The results show that the as-built microstructure is characterized by epitaxially grown f columnar grains and
acicular martensite ' with a certain orientation in the grains. After annealing, o' decomposes and is transformed into basket-weave a+f.
After cyclic heat treatment, lath a becomes globularized, and the microstructure is composed of equiaxed a, lath a and residual . After
heat treatment, the low cycle fatigue property of the annealed alloy reaches more than 87% of that of the forgings. Besides, the property of
cyclic heat treated alloy reaches more than 90% of that of the forgings.
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