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摘  要：铝锂合金作为一种新型航空航天材料，因其具有低密度、高比强度和比刚度等优势，从而具有广泛的应用前

景。现有关铝锂合金的研究多集中于微合金化及热加工工艺（如热挤压、热处理等），但忽视了热加工步骤前的原始铝

锂合金锭料质量也会对合金最终性能产生很大影响。然而，目前对于铝锂合金锭料的熔炼及凝固成形技术的研究尚且

不多。因此，本文从高真空和非真空 2 种环境下对铝锂合金锭料的制备技术进行了综述和总结，其中包括喷射成形、

粉末冶金、超声辅助挤压铸造成形工艺等。本文深入分析了这些技术的优缺点，并提出制备铝锂合金锭料的一些新思

路或展望。  
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锂元素作为世界上最轻的金属元素，其密度仅为

0.53 g/cm3，研究表明铝合金中每添加 1%的 Li 元素，

密度可降低约 3%，弹性模量可提升约 6%[1-2]。铝锂合

金作为一种新型航空航天结构材料，由于其低密度、

高比强度和比刚度等优势，取代传统商用铝合金可大

大提高结构稳定性，并使结构部件质量减轻 10%~20%，

刚度提高 15%~20%，应用前景十分广阔[3-4]。自 1924
年德国科学家首次将 Li 元素（仅 0.1%，质量分数）

加入到铝合金中，研制出第 1 种含 Li 的铝合金

Seleron，铝锂合金的研究距今已近百年，对于铝锂合

金制备工艺的研究已经很多[5]。目前，热挤压、轧制

等塑性变形工艺是制备航空航天用高性能铝锂合金结

构件的常用方法。 然而，变形铝锂合金由于自身各向

异性严重，而且无法一次成形大型复杂构件如涡轮发

动机叶轮、导弹壳体等，这也在一定程度上限制了其

应用推广[6-7]。所以，近年来许多研究者也逐渐将研究

方向转向铸造法制备铝锂合金。铸造法成型的铝锂合

金不仅可以制造结构十分复杂的构件，解决变形铝

锂合金中存在的严重各向异性，而且允许合金中含

锂量更高，从而使结构件拥有更低的密度和更高的

刚度 [8]。  
就变形铝锂合金而言，其性能主要取决于变形工

艺参数和所用锭料质量。关于变形工艺参数这一影响

因素的研究已经很多，但对变形前的铝锂合金锭料质

量的影响研究尚少。Li 元素的添加在带来低密度、高

刚度等优势的同时，也造成铝锂合金在熔炼过程中熔

体吸氢，加剧造成氢脆，合金热裂倾向增大并导致成

分偏析和气孔等缺陷更加明显。这也就导致通过传统

铸造法制备高质量铝锂合金铸锭也存在着很大的困

难。而近年来，随着快速凝固技术的发展，喷射沉积

和粉末冶金等工艺也逐渐应用于制备铝锂合金锭料。

关于铝锂合金中 Li 元素的吸氢问题，将铝锂合金锭料

的制备工艺根据凝固成形过程是否接触空气可分为高

真空和非真空 2 种条件。在高真空条件下，铝锂合金

的制备工艺主要有喷射成形法、粉末冶金法，真空熔

炼法等；而在非真空条件下，合金的制备工艺一般也

需要在保护气氛下，添加覆盖剂并进行吹气精炼，以

保证熔体质量。也有研究者通过在合金凝固过程中施

加外场（超声波、磁场等）来改善铝锂合金铸锭的凝

固微观组织。 
本文从高真空和非真空 2 种条件下对铝锂合金锭

料的制备技术进行了综述和总结，讨论了这些技术的

优点和不足，分析了成形工艺对合金微观组织及力学

性能的影响，并提出了铝锂合金锭料制备的一些新思

路或展望。 

1  高真空条件下铝锂合金锭料的制备 

1.1  喷射成形 

喷射成形工艺作为一种快速凝固技术，通过高速气

体喷射将熔融金属高能分解成微米大小的液滴，这些液
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滴是固体、液体和部分凝固颗粒的混合物，随后沉积在

基底上形成沉积物[9-10]。与直接冷铸等传统加工工艺相

比，喷射成形因具有更快的冷却速度而具备一些优势，

包括消除宏观偏析、微观结构细化、合金元素溶解度提

高等[11-12]。同时，这一工艺是在惰性气氛下进行，有效

地避免了氧化物污染，脆性元素 Na 和 H 含量降低，从

而有利于合金的延展性和断裂韧性[13]。因此，喷射成

形也成为铝锂合金制备的理想选择。 
Pu 等人[14]系统地研究了传统铸造和喷射成形制备

的 2195 合金在微观结构和机械性能方面的差异，铸造

和喷射成形 2195 合金的 SEM 照片及力学性能如图 1 所

示。结果表明，铸造的 2195 合金呈现出明显的树枝状晶

粒（图 1a），而喷射合金则由细小的等轴晶粒组成（图 1b）。
相比于铸造合金，喷射合金平均晶粒尺寸减小 46.9%。

而且在喷射成形合金中第二相尺寸、分布也更加均匀。

喷射成形的 2195铝合金的极限抗拉强度（ultimate tensile 
strength，UTS）、屈服强度（yield strength，YS）及伸长

率（elongation，EL）分别为 223 MPa、141 MPa 和 3.7%，

相比于铸造合金分别提高了 25%、25%和 54%。而在后

续的均匀化处理中，喷射合金对合金元素的溶解度更

高，固溶强化效果也就更明显。然而，由于惰性气体对

熔体的雾化作用，喷射成形合金不可避免地会存在一些

气孔，如图 1b 所示。气孔的存在对合金的机械性能有

害，所以要获得高质量的铝锂合金产品，往往需要对喷

射成形合金进行后续的热加工工艺（如热挤压、轧制或

热等静压（HIP）等）[15-17]。 
Vaidya 等人[18]通过对喷射成形 8090 铝锂合金的

时效动力学研究发现，在时效前经过预应变的样品中

具有更高的位错密度，表现出更高的强度，甚至可以

进一步减少峰时效时间。Gholinia 等人[19]对喷射铸造

铝锂合金热机械加工形成的超细晶组织进行了研究，

发现在高应变下，不稳定的变形纤维组织可诱导破碎

成非常细小的等轴晶粒，大大降低分散体颗粒间距，

导致材料具有高强度和低的各向异性。Jagan 等人[20]

利用加工图技术研究了喷射成形+HIP 制造 Al-Li
（UL40）合金的热变形行为，阐述了 HIP 对热加工性

能的重要影响，确定了 HIP 化 UL40 材料热加工的“安

全窗口”。Zhang 等人[21]研究了喷射成形的 2195 铝锂

合金挤压板的微观结构和低疲劳行为，并建立了疲劳

寿命模型，准确预测了 AA2195 的疲劳寿命。通过对

喷射成形 2195铝锂合金 2次挤压阶段之间进行中间退

火，Wang 等人[22]采用不同参数的退火处理，研究了

其对喷射成形 2195 铝合金挤压板微观结构及性能的

影响。结果表明，通过短时间内相对较低温度的中间

退火，可以有效地降低变形抗力和晶粒粗化程度。通

过对喷射成形 2195 铝锂合金进行热挤压、固溶处理、

预拉伸和时效处理，Wang 等人[23]观察到喷射成形合

金坯料的微观结构为细小的等轴晶，存在气孔，偏析

度较低，在热挤压后形成了典型性的纤维状结构和不

完全再结晶。而在固溶和时效处理后，大量的 T1 和 δ′
相从基体中析出，从而显著提高了抗拉强度。挤压态

和固溶态 2195 喷射成形合金的微观组织图片及不同

处理后合金的环境单轴应力-应变曲线如图 2 所示。如

图 2e 所示，在 T83 处理下，喷射成形的 2195 铝锂合

金的 UTS 为 632 MPa，YS 为 600 MPa，EL 为 10%。

此外，Moore 等人[24]通过极化试验研究了 2 种新型喷

射成形合金 OX24（Al-3.91Mg-1.34Li-0.4Zr）和 OX27
（Al-4Cu-1Li-0.5Mg-0.5Ag-0.3Zr）的点蚀行为，并将

其与喷射成形的 AA7034 铝合金的进行对比。结果表

明，OX24 和 OX27 合金的耐腐蚀性能均优于 AA7034。 
 

 

 

 

 

 

 

 

 

 

 

 

 

图 1  铸造和喷射成形 2195 铝合金 SEM 照片及力学性能 

Fig.1  SEM images (a-d) and mechanical property (e) of as-cast (a, c) and as-sprayed (b, d) 2195 aluminum alloys[14] 
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图 2  挤压态和固溶态 2195 喷射成形合金的微观组织及不同处理后合金的单轴应力-应变曲线 

Fig.2  Microstructures of the extruded and solution treated alloys: (a) OM image along extrusion direction; (b) OM image in transverse 

direction; (c) SEM image of the extruded alloy; (d) SEM image of the solution treated alloy; (e) engineering stress-engineering 

strain curves of the 2195 spray deposited alloy after different treatments[23] 

 
综上所述，喷射成形技术可以作为制备微观结构

细小、合金化能力强、偏析度低的高质量铝锂合金锭

料的理想选择。在结合后续的热机械加工和热处理后，

坯料中存在的气孔缺陷也基本消除，铝锂合金表现出

更优异的力学性能。但是，雾化用惰性气体的高额成

本以及高冷却速率下带来的原材料的浪费和效率低下

也是不可避免的。 
1.2  粉末冶金 

近年来，粉末冶金（PM）已经成功地生产出一系

列性能优异的铝合金。通过粉末冶金制备得到的铝合

金具有晶粒细小、成分均匀、合金元素固溶度高等优

点[25-27]。一般地，粉末冶金工艺包括粉末雾化、粉末

致密化和随后的热变形。由于 Al-Li 合金粉末的高活

性，粉末致密化必须在真空或惰性气体保护下进行。

为了消除烧结过程中存在的孔隙，需要进行后续的热

加工工艺，如热挤压、轧制。 
Qi 等人[28]系统地研究了热挤压下粉末冶金 2195

铝锂合金的机械性能和微观组织演变。烧结后和挤压

成型的 2195 铝锂合金的显微组织及 EBSD 照片如图 3
所示。在图 3a 所示的烧结合金基体中，可以观察到残

余粉末颗粒边界和气孔这些典型的烧结缺陷。而在对

PM2195Al-Li 合金实施热挤压后可成功实现完全致密

化，并消除烧结缺陷，晶粒也得到细化。经过 T6 处

理的样品表现出强度和延展性的完美结合，即 UTS 为

662 MPa，YS 为 617 MPa，EL 为 6.6%。Kuang 等人[29]

研究了通过铸锭冶金（IM）和气体雾化（GA）与 HIP

制造的 Al-Mg-Li-Sc-Zr 合金的微观结构演变和机械性

能。结果表明，相比于铸造合金，HIP 合金中具有精

密均匀的显微组织，UTS 为 352 MPa，提高了约 14%。

Lv 等人[30]也通过 GA 和 HIP 制备了 2195 铝锂合金坯

料，然后进行了热挤压和不同的热处理，研究了合金

的微观结构演变和机械性能。HIP 和挤压态合金的背

散射 SEM 照片和相应的 EDS 元素面分布以及 EBSD
分析结果如图 4 所示。结果表明，HIP 合金呈现出精

细的微观结构，但具有明显的粉末边界和镁元素偏析。

热挤压打破了粉末边界，消除了元素偏析，具有明显

的择优取向，从而改善了合金的机械性能。该研究还

发现人工时效前引入预变形可产生高密度的细小 T1

相，并抑制 δ′相的形成，合金中出现更为狭窄的无沉

淀析出带。在 T8 处理后，2195 铝锂合金具有优异的力

学性能，UTS 为 600 MPa，YS 为 576 MPa，EL 为 9%。

Reddy 等人[31]采用粉末冶金工艺，结合微波烧结和热挤压

工艺制备了 Al/Al-Cu-Li 复合材料，在复合材料的微观结

构中观察到了均匀分布的 Al-Cu-Li 颗粒和良好的界面结

合，其硬度、拉伸和压缩性能以及热性能都十分出色。 
综上所述，虽然气体雾化烧结后得到的铝锂合金

坯料仍存在气孔等烧结缺陷，但是在结合热挤压等工

艺后也可以为制备高质量铝锂合金提供一个新的理想

选择，当然这也就造成生产成本的提高。 
1.3  真空熔铸 

如上所述，在铝锂合金的生产过程中，吸氢严重

一直是一个亟待解决的关键技术问题。真空熔炼生产 
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图 3  烧结后和挤压成型的 2195 铝锂合金的显微组织及 EBSD 照片 

Fig.3  OM images (a-b) and EBSD images (c-d) of sintered (a, c) and extruded (b, d) PM 2195 Al-Li alloy [28] 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

图 4  HIP 态和挤压态 2195 铝锂合金的背散射 SEM 照片和相应的 EDS 元素面分布以及 EBSD 分析 

Fig.4  Backscattered SEM images and corresponding EDS element mappings of the HIPed (a) and extruded (b) 2195 alloy; inverse pole 

figure (IPF) image of the HIPed alloy (c); IPF image of the extruded alloy (d); pole figure (PF) image of HIPed alloy (e); PF image 

of extruded alloy (f)[30] 

 
铝理合金铸锭，在隔绝空气的环境下进行熔炼，有利

于防止锂的燃烧和损失，避免合金组织内部气孔、氧

化夹杂等缺陷，去除 Na、K 等杂质，使熔体更加纯净，

从而获得高质量铝锂合金。澳大利亚  Comalco 
Aluminium 公司采用高真空纯化熔炼法将  Al-Li 合

金熔体中的碱金属含量控制在 1×10-6 以下，H 浓度显

著降低，合金的韧性显著提高。Nayan 等人[32]采用一

种锂添加新技术，在动态氩气环境下使用真空熔炼法制

备了 7~8 kg 规模的 Al-(5-5.7)Cu-(1.2-1.6)Li-(0.4-0.6)Mg- 
(0.4-0.6)Ag-(0.15-0.2)Zr 铝锂合金，并对得到的铸锭进
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行了机械加工及热处理研究，确定了微观组织及机械

性能。结果表明，采用了一种新的加锂技术，使整个

坯料的锂回收率超过 90%，并且整个坯料成分均匀，

T6状态下合金的机械性能优于 AA2219 合金在 T6和
T87 回火条件下的机械性能。Nayan 等人[33]还在动态

氩气环境下，在真空感应熔炼炉（VIM）中成功熔铸

了 200 kg 的铝-铜-锂合金 AA2195 钢锭，得到的铝锂

合金铸锭成分均匀，锂回收率高。专门设计的锂添加

装置如图 5a 所示，用 VIM 炉中提供的钢柱塞加入装

在特制铝容器中的锂。如图 5b 所示，铝制容器中的锂

被绑在 VIM 提供的钢制柱塞上。Meriç 等人[34]通过真

空熔炼制备了不同锂含量（2%，3%和 4%，质量分数）

2024 铝合金，与非真空浇铸合金进行对比，研究了其

物理与机械性能。感应炉和真空室的横截面图如图 6
所示。在这项研究中，合金中添加 1%的锂后，弹性

模量增加了 6%，密度降低了 3%。真空浇铸合金的机

械性能优于非真空浇铸合金。而且随着锂含量的增加，

合金的比弹性模量（E/ρ）迅速增加，但比强度（σ/ρ）
保持不变。Zhang 等人[35]采用砂型重力铸造和真空熔

炼工艺，探讨氢浓度和冷却速度对铝锂合金孔隙大小

和形态分布的影响。结果表明，真空浇铸不仅降低了

铸件中的氢浓度，还减少了气孔。相比于砂型重力铸

造，气孔率从 1.139% 降至 0.015%，强度和伸长率也

大约提高了 1 倍。并且发现通过提高冷却速度，可进

一步提高铝锂合金的强度和延展性。 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

图 5  专门设计的锂添加装置图 

Fig.5  Specially designed lithium addition container (a);  

specially designed lithium addition container attached 

to steel plunger in VIM (b)[33] 

2  非真空条件下铝锂合金锭料的制备 

考虑到在真空条件下制备铝锂合金的设备成本高

以及操作复杂性，不适合于复杂结构精密铸件的制备， 
所以目前铝锂合金制备大多还是在非真空条件下。但

是由于铝锂合金在空气下熔炼极易引发严重吸氢和氧

化造渣的现象，所以通常非真空条件下也需要在惰性

气体保护下通过添加覆盖剂来隔绝空气，从而保证熔

体质量。 
2.1  重力铸造 

铸造铝锂合金研究早期多采用惰性气体保护法和

添加覆盖剂结合来进行合金熔体的保护。覆盖剂的组

成成分大多为碱金属或碱土金属卤化物盐的混合物，

一般常见的有 LiCl、LiF、KCl 等混合盐。覆盖剂在金

属熔体表面均匀扩散，在空气与熔体之间形成一层保

护层，从而避免金属液与空气中的氧气和水蒸气接触，

减少铝锂合金熔炼过程中的氢气和氧气的吸收，避免

了锂元素的烧损，利于保证熔体质量。除了惰性气体

保护和覆盖剂外，通常还需要对熔体进行精炼除气，

可以向熔体中通入氩气、C2Cl6 等，大量的气泡可以在

上升过程中吸附气体（主要是氢）以及夹杂物，并携

带至金属液表面排出，从而净化铝液。 
Zhang 等人[36]研究了铸造 Al-2Li-2Cu-0.5Mg-0.2Zr

合金在热处理过程中的微观结构演变和机械性能。结 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

图 6  感应炉和真空室的横截面图 

Fig.6  Cross section of the induction furnace and vacuum chamber[34] 
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果表明，Al-2Li-2Cu-0.5Mg-0.2Zr 合金的铸态微观组织

由树枝状 α-Al 基体和晶界附近粗大的次生相组成，次

生相在固溶处理后大部分溶解到 α-Al 基体中，在时效

过程中，T1 和 S′相竞争性析出，但没有观察到 θ′相的

析出，经过T6热处理后合金的机械性能显著提高。Chen
等人[37]研究了铸造 Al-3Li-xCu-0.2Zr 合金的微观结构

和机械性能。结果表明，添加铜元素可轻微细化铸造铝

锂合金的晶粒尺寸，随着铜含量的增加，峰值时效时间

缩短，峰值硬度增加，在添加 2% Cu（质量分数）后，

合金的力学性能最优。Shi 等人[38]研究了添加 Sc 对铸

造 Al-3Li-1.5Cu-0.15Zr 合金的微观组织及机械性能的

影响。结果表明，添加 0.15%（质量分数）的 Sc 后，

合金在铸态下晶粒尺寸从 120 μm 减小到 30 μm，经过

170 ℃/32 h 时效处理后合金机械抗拉强度可以达到

415 MPa，伸长率为 5.5%，相比于未添加 Sc 合金都有

显著提升。Zhang 等人[39]研究发现镁元素的添加可以不

断细化铸造 Al-2Li-2Cu-0.2Zr 合金晶粒尺寸，提高晶界

处次生相的体积分数，促进 S′相的析出，抑制 δ′相在时

效过程中的粗化，大大提高基合金的机械性能。Zhang
等 人 [40] 还 系 统 地 研 究 了 Sc 含 量 对 铸 造

Al-2Li-2Cu-0.5Mg-xSc-0.2Zr 合金微观结构和力学性能

的影响。铸态合金的金相显微组织和时效 32 h 后合金

的 TEM 照片如图 7 所示。研究发现，随着 Sc 含量的

增加，铸态合金晶粒尺寸呈阶梯状显著减小，纳米级

Al3(Sc,Zr)分散体的体积分数随着 Sc 含量的增加而提

高。而且在时效过程中发现 Sc 的添加可以细化 S′相尺

寸，降低合金中 δ′相和 δ′相-无沉淀析出带（δ′-PFZs）
的生长率。而且随着 Sc 含量和时效时间的增加，YS
和 UTS 不断提高，含 0.2%Sc 的合金在 175 ℃下时效

32 h 后的伸长率最高，达到 6.0%，最佳的 Sc 添加量为

0.2%（质量分数）。Zn 和 Ti 元素的添加都可以促进铸

造 Al-Li-Cu 合金中 T1相的析出，抑制 δ′相和 δ′-PFZs 的
粗化，有效提高了合金的抗拉强度[41-42]。Wang 等人[43]

采用阶梯状铁模研究了铸造过程中冷却速度对铸造

Al-2Li-2Cu-0.5Mg-0.15Sc-0.1Zr-0.1Ti 合金微观结构演

变和机械性能的影响。结果表明，冷却速度的增加细化

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

图 7  铸态 Al-2Li-2Cu-0.5Mg-xSc-0.2Zr（x=0, 0.1, 0.2, 0.3）合金的金相显微组织和时效 32 h 后的 TEM 照片 

Fig.7  OM images of as-cast Al-2Li-2Cu-0.5Mg-xSc-0.2Zr (x=0, 0.1, 0.2, 0.3) alloys (a-d) and TEM images of the alloys aged for 

32 h (e-k); (e-f) bright field (BF) and dark field (DF) images of the base alloy taken in an orientation near [011]α zone axis;  

(g) BF image of the 0.2Sc alloy (B = [011], inset); (h) corresponding DF image of the 0.2Sc alloy, g = (011)δ′; (i-k) DF images 

of the base, the 0.1Sc and the 0.2Sc alloys taken using 110 superlattice reflections in an orientation near [011]α zone axis, 

respectively[40] 
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合金晶粒尺寸，提高铸态合金第二相体积分数。在时效

过程中，快速冷却明显促进 δ′相、T1相和 S′相的析出并

抑制其粗化，大大改善了合金机械性能。在 175 ℃时效

64 h 后，合金在冷却速度为 16.1 ℃/s 时获得最佳力学性

能，即 UTS 为 512 MPa，YS 为 410 MPa，EL 为 8%。 
但是在大气环境中熔炼铝锂合金，即使采用覆盖

剂或惰性气体保护，相比于真空条件下，对熔体的保

护效果也大幅减弱。同时，采用重力铸造法制备铝锂

合金，合金中也会出现气孔、成分偏析等缺陷，不利

于合金性能。 
2.2  电磁铸造 

Cui 等 人 [44] 在 CREM （ casting, refining and 
electromagnetic）工艺[45]的基础上，提出并开发了一种

新型高效无污染的铸造工艺—— 低频电磁铸造

（LFEC）。LFEC 是通过线圈在铸造模具周围施加低

频（低于 50 Hz）交流电对熔体进行电磁搅拌，从而

改变底壳中熔体的流动性和温度分布。随着 LFEC 工

艺的不断发展，它的一系列优点受到越来越多的关注，

比如细化微观结构、改善成分偏析和消除中心裂纹  
等[46-48]。基于这些优点，将 LFEC 工艺用于制备铝锂

合金具有广泛的应用前景。 
Wang 等人[46]研究了 LFEC 工艺对 5A90 铝锂合金

微观组织及力学性能的影响。结果表明，与传统的直

接冷铸（DCC）相比，LFEC 铸件微观结构得到明显

改善，晶粒由粗树枝状转变为细小的等轴晶粒，合金

元素的固溶度提高，成分偏析现象得到改善。而且

LFEC 工艺能促进 δ′(Al3Li)/β′(Al3Zr)的析出并减小

PFZ 的宽度，从而增强析出强化效果。在 150 A/15 Hz
的低频电磁场作用下，时效状态下合金的 YS 和 UTS
分别为 371.85 和 495.5 MPa，EL 达到 9.82%。Wang
等人[49]还研究了 LFEC 工艺对含 Sc 和不含 0.15%Sc
（质量分数）的 5A90 Al-Mg-Li 合金微观结构和拉伸

性能的影响。LFEC 实验装置示意图如图 8a 所示。如

图 8b~8e 所示为 DCC 和 LFEC 5A90 合金的铸态微观 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

图 8  LFEC 实验装置示意图以及 DCC 和 LFEC 5A90 合金铸态微观结构和时效态的 TEM 照片 

Fig.8  Schematic diagram of experimental apparatus of LFEC (a); microstructures of 5A90 alloys in DCC (b, d) and LFEC (c, e) ingots 

without Sc (b-c) and with Sc (d-e); TEM images of the as-aged 5A90 alloy without Sc (f-g) and with Sc (h-k) obtained by   

DCC (f, h, j) and LFEC (g, i, k)[49] 
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图 9  通过 3 种制备工艺制备得到的 Al-Cu-Li 合金坯料的 OM 照片、带晶界的反极图和 BSE 照片以及不同工艺下合金的工程应力-   

应变曲线和拉伸力学性能 

Fig.9  OM images (a-c), inverse pole figures (IPF) with grain boundary (GB) (d-f) and BSE images (g-i) of Al-Cu-Li alloy 

prepared by different methods; engineering stress-strain curves (j) and tensile properties (k) of Al-Cu-Li alloy prepared by 

different methods[56] 
 
结构。结合 LFEC 工艺，添加 Sc 的 5A90 铝锂合金晶

粒尺寸从 120.6 μm 细化至 45.2 μm，形成更多的等轴

晶粒。如图 8f~8i，在时效过程中，含 Sc LFEC 合金

中 Al3(Sc,Zr)颗粒密度更高、尺寸更小、分布更加均匀，

并钉扎在晶界处，可有效抑制晶粒长大。由图 8j~8k
所示，LFEC 工艺还可以抑制时效过程中合金中
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δ′-PFZs 的粗化。 
综上所述，电磁铸造具有细化微观结构，改善成

分偏析等优势，也有利于高质量铝锂合金铸锭。但是

电磁铸造仍存在不少缺点，比如对设备的投资较大，

电能损耗较多，操作较为困难等。 
2.3  超声辅助挤压铸造 

超声波振动已经被广泛应用于铝合金铸造工

艺 [50-52]。通过对熔体施加外部超声波场改变熔体流场

和温度场，从而显著细化晶粒并减少成分偏析。而且

有报道称，通过超声波振动在铝熔体中产生震荡压力

产生大量细小空化泡，从而在交变压力和溶解氢从熔

体向空化泡单向扩散的影响下，其中一些空化泡迅速

增大，大到一定程度时就会克服阻力浮到液面上消

失[53-54]。这说明超声波处理对熔体的另一个是脱气精

炼，尤其是脱氢。同时，挤压铸造工艺可以加快熔体

的凝固和冷却速率，大幅细化晶粒尺寸并有效地消除

缩松、缩孔等铸造缺陷[55]。所以，超声波处理辅助挤

压铸造技术可能会为高质量高性能铝锂合金铸锭的制

备提供一种新方法。 
Li 等人 [56]针对新型 Al-5Cu-0.6Li-0.5Mn-0.3Mg- 

0.15Ti 合金，研究了传统重力铸造（GC）、挤压铸造

（SC）和超声辅助挤压铸造（UT+SC）对合金微观结

构演变及力学性能的影响。通过 3 种制备工艺制备得

到的 Al-Cu-Li 合金坯料的 OM 照片以及带晶界的反极

图如图 9a~9f 所示。结果表明，相比于重力铸造，挤

压铸造合金晶粒得到显著细化，气孔也基本消除。而

在超声处理后，虽然合金晶粒尺寸没有明显变化，但

其晶粒圆度大于未进行超声波处理的挤压铸造合金。

如图 9g~9i 为不同工艺制备得到合金的 BSE 照片，可

以观察到相比于重力铸造，挤压铸造合金中第二相明

显细化，数量也有所增加，但仍存在局部晶界偏析现

象。而在超声处理后，晶界偏析现象得到有效改善，

第二相分布也更加均匀。图 9j~9k 给出了不同工艺下

合金的工程应力-应变曲线和拉伸力学性能图。结合超

声处理和挤压铸造后，Al-Cu-Li 合金的 UTS、YS 和

EL 分别达到 300 MPa、190 MPa 和 16.5%，比重力铸

造合金分别提高了 27.1%、35.7%和 230%，与挤压铸

造合金相比，分别提高了 5.3%、6.7%和 26.9%。Li
等人 [57]还研究了超声辅助挤压铸造 Al-5Cu-0.6Li- 
0.5Mn-0.3Mg-0.15Ti 合金的时效析出物及其对力学性

能的影响。合金的 2 种制备工艺示意图如图 10 所示。

研究表明，在 T6 热处理（530 ℃固溶处理 10 h+180 ℃
时效 8 h）后，合金中析出均匀分散的 T(AlxMnyCuz)
相、纳米级 T1 相和更小的 θ′相。这些析出物与铝基体

呈共格或半共格关系，不仅能提高强度，还可以延缓

局部应变和断裂。T6 热处理后，Al-Cu-Li-Mn 合金

UTS、YS 和 EL 分别达到 465 MPa、310 MPa 和 16.5%。

通过研究超声处理和锂含量对 Al-5Cu-xLi 合金微观结

构演变，Li 等人[58]发现，对铝锂合金进行超声处理除

了能细化晶粒和均匀化外，还能带来显著的脱气效应，

这有利于 Al-5Cu-xLi 合金获得高强度和韧性。 
综上所述，超声处理首先可以有效地改善传统铸

造法造成的晶粒粗大和成分偏析等问题。再结合挤压

铸造工艺后，微观结构进一步细化，并有效消除缩松 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

图 10  Al-Cu-Li-Mn 合金的 2 种制备工艺示意图 

Fig.10  Schematic diagrams of two preparation processes for Al-Cu-Li-Mn alloy: (a) ultrasonic treatment and (b) squeeze casting[57] 

a b 
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缩孔等缺陷。同时超声辅助挤压铸造工艺适用于大型

复杂构件生产，为工业化制备铝锂合金铸锭提供了一

个理想选择。 

3  结果与展望 

随着航空航天和国防军工等领域对材料轻量化、

高性能指标的不断追求，铝锂合金轻质高刚度等优势

越来越受到人们的重视。但是锂元素的添加在带来低

密度、高模量等优点的同时，也造成铝锂合金吸氢严

重等问题，也对锭料的制备造成很大困难。目前喷射

成形、粉末冶金等高真空条件下的制备技术可以避免

接触空气，有效解决合金吸氢问题，而且所制备得到

的铝锂合金具有微观组织细小、合金化能力强等优点。

但是所得到的合金仍存在气孔、致密性差的问题，并

且生产成本昂贵。传统铸造法虽然是在保护气氛下并

添加覆盖剂进行熔炼，易于操作，但是隔绝空气的效

果仍不理想。而且通常传统铸造法都是采用重力铸造，

熔体在凝固成形过程中仍存在吸氢问题，并且还会造

成晶粒粗大，成分偏析严重。同时，这些制备技术往

往只能用于制备小尺寸锭料，也限制了其应用。为了

获得高质量的大尺寸铝锂合金锭料，可以从以下几个

方面改进其制备技术： 
1）采用“低真空熔炼”与“旋转除气精炼”相结

合的熔炼新技术。首先将无 Li 原材料置于低真空熔炼

炉内熔化，再进行旋转除气精炼，随后加入 Li 并及时

抽真空且使用氩气进行洗气，保证熔炼炉内处于低真

空状态。相比于传统的“熔剂+吹气保护”熔炼法，

该新技术可以尽量避免熔体与空气接触且易于操作，

又解决了非真空条件下“旋转除气精炼”时除气效果

不佳、除气时间长及铝锂合金液氧化烧损严重的问题，

同时克服了现有高真空熔炼过程中无法进行除气除渣

的不足。 
2）采用外场（如超声波、电磁波）等辅助技术处

理铝锂合金熔体。例如，将超声处理与半固态成形相

结合，超声处理可以显著细化晶粒并改善成分偏析，

同时半固态成形温度相对较低，也减少了熔体与空气

的接触时间，改善合金的吸氢问题。而超声波处理对

熔体的另一个重要作用是脱气精炼，尤其是脱氢。同

时这些辅助技术所需设备简单、可操作性强、生产成

本更低。 
3）采用高压成形技术制备铝锂合金，特别是对铝

锂合金熔体进行真空压铸成型或挤压铸造成型。相比

于传统重力铸造，熔体快速凝固成形，不仅可以大幅

细化合金晶粒、改善成分偏析和避免缩松缩孔等缺陷，

而且合金在凝固成形过程中也避免了与空气接触，改

善吸氢问题。同时，真空压铸或真空挤压铸造也可以

有效解决传统压铸或挤压在凝固成形过程中铝熔体吸

氢、氧化等严重问题。 
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Research Progress of Melting and Solidification Forming Technology for Al-Li Alloy 
 

Yan Zhaoxiang, Pan Yu, Li Jianyu, Lü Shulin, Wu Shusen, Guo Wei   

(State Key Laboratory of Material Processing and Die & Mould Technology, School of Materials Science and Engineering, Huazhong 

University of Science and Technology, Wuhan 430074, China) 

 

Abstract: Al-Li alloys, as a new type of aerospace material, have a wide range of application prospects due to their advantages of low 

density, high specific strength and specific stiffness. Existing research on Al-Li alloys focuses on microalloying and hot processing (e.g., 

hot extrusion, heat treatment), but neglects the fact that the quality of the original Al-Li alloy ingot prior to the hot processing step also has 

a great impact on the final properties of the alloy. However, not much research has been done on the melting and solidification forming 

technologies for Al-Li alloy ingots. Therefore, the preparation techniques of Al-Li alloy ingots in both high-vacuum and non-vacuum 

environments, including spray forming, powder metallurgy, and ultrasonic-assisted extrusion casting forming process, were reviewed and 

summarized. The advantages and disadvantages of these technologies were analyzed, and some new ideas or prospects for the preparation 

of Al-Li alloy ingots were proposed. 

Key words: Al-Li alloy; melting; preparation technology; microstructure; mechanical properties 
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