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Table 1 Composition of TiAl alloy fabricated by SLM (at%)
Alloy grade Al Nb Cr Mo Y v B Ti Ref.
4822 48 2 2 - - - - Bal. [20,24]
4822-high Nb 48 8 2 - - - - Bal. [20]
4822-high Cr 47 2 2 - - - - Bal. [21,25-27]
4822-high Nb-low Al 45 5 2 - - - - Bal. [28-31]
4822-rare carth 46.5 2 25 ] 0.5 ; ] Bal.  [32-33]
modification
TNM 43.5 4 - 1 - - 0.1 Bal. [22]
TNM-high Nb 44.8 6 - 1 - - 0.1 Bal. [34-37]
Tial alloy-rare earth 40 - . - 0.5 9 . Bal.  [23,33]
modification
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atomization, PIGA ) 14§ B T it 7 W R 5 (L ik
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Fig.3 Schematic diagrams (a, c¢) and morphologies (b, d) of TNB alloy prepared by PIGA (a—b) and EIGA (c—d) methods; comparisons of

particle size distribution of powder prepared by GA (e) and PREP (f) methods®>4**4
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Fig.4 Equilibrium phase diagram of TiAl alloy

* 2 SLM#l& TiAl S & B RNHRBE D R ERIKEH
Table 2 Microstructural phases and crystal structures in

TiAl alloy fabricated by SLM

Type  Pearson symbol  Space group  Crystal structure

a2(TizAl) hp8 P63/ mmm DOy
(TiAl) tp4 P4/mmm L1,
B2/fs c2 Pm3m B2
B19 op4 Pmma B19
B33 oc8 Cmcm B33

XA EAR SR . A HERERE, SNEs
bt & . HETES BN TiAl 448 TiAl 2 E
B RRLIR S KL ARFAE « 2R v A A0 AR AL 1] 7 A AN [R] 5
ﬂru] [24, 28, 30-33, 45, 52-57] .

s L 70 R AEAE Gl AR — R AE AR TR,
DABH RS FEAA SR K K . Gao 25120 i i in s + ot &
#% 7 SLM-Ti-40A1-9V-0.5Y &4, K1 T4 o #
1 B2 #.
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figures corresponding to Fig.5a-5c¢, respectively!*”!
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Fig.6 Influence of common scanning strategies on crystal orientation
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Fig.7 Influence of different scanning strategies on crystal orientation: (a) EBSD analysis of samples fabricated with different scanning

strategies; (b) pole figure analysis of samples; (¢) trend of crystal orientation changes®”
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Fig.8 Formation of equiaxed and columnar grains due to deviation between focal plane and build plane: (a, d) microstructure and grain

boundary distribution formed when the laser focal plane is above the material build plane; (b, ) microstructure and grain boundary

distribution formed when the laser focal plane coincides with the material build plane; (c, f) microstructure and grain boundary

distribution formed when the laser focal plane is below the material build plane
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Fig.12 Introducing f phase to suppress material cracking by modulating energy input: (a) severe material cracking under high energy

input: (b—c) phase composition and IPF map of Figl2a, respectively; (d) cracking under low energy input; (e—f) phase

composition and IPF map of Fig.12d, respectively!’!
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Fig.13 Microstructures of TiAl alloy after heat treatment and SLM-TiAl alloy after post-processing “>****): (a) heat treatment regimen for

TiAl alloy; (b) phase composition of SLM-TiAl alloy; (c) phase composition of SLM-TiAl alloy samples after HIP processing;

(d—e) microstructures of SLM-TiAl alloy samples; (f—g) microstructure of SLM-TiAl alloy samples after heat treatment
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Research Progress of Selective Laser Melting Titanium Aluminide Alloy

Li Kang’an', Wan Jie'?, Tang Bin'?, Xue Xiangyil, Li Jinshan'?, Chen Biao'*?
1. State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an 710072, China
y ry g y Y.
(2. Chongqing Innovation Center, Northwestern Polytechnical University, Chongqing 401135, China)

Abstract: Owing to its high specific strength, creep resistance, oxidation resistance and low density, titanium aluminide (TiAl) alloy is
regarded as an ideal candidate material to replace nickel-based superalloys for the fabrication of engine turbine blades used in aerospace
applications. However, its application is restricted by poor plasticity at room temperature and difficulties in hot shaping. Compared with
conventional subtractive manufacturing process, selective laser melting possesses some unique advantages such as short lead time, high
processing resolution, near-net shape forming. Therefore, it can be used to remedy the deficiency of conventional subtractive
manufacturing process and accelerate the application of TiAl. The research progress of titanium aluminide manufactured by selective laser
melting were summarized. The effect of chemical composition, powder morphology, printing parameters and post-printing heat treatment
on the printing defects, phase constitutes, microstructure and mechanical properties was reviewed. Finally, the future developing directions
of SLM TiAl were prospected.
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