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摘  要：采用机械球磨和放电等离子烧结法（SPS）制备了 W-0.5%ZrC-(1, 3)%Re（WZC1R，WZC3R）和 W-0.5%HfC-(1, 

3)%Re（WHC1R，WHC3R）（质量分数）4 种钨基材料，并对其微结构、力学性能和高温稳定性进行了测试与分析。

WZC3R 合金在 500 ℃时的极限抗拉强度（UTS）高达 728 MPa，600 ℃时 UTS 维持 653 MPa，比 SPS 制备的纯 W 提

升近 2.1 倍。弥散分布的纳米尺寸 ZrC 颗粒起到钉扎晶界和位错的作用，提升了材料强度，此外抑制晶粒粗化带来细晶

强化作用。WHC3R 在 400 ℃时，其延伸率为 13.9%，韧脆转变温度（ductile-brittle transition temperature, DBTT）介于

300 ℃和 400 ℃，比 SPS 制备的 W-ZrC 和纯 W 分别降低 200 ℃和 300 ℃。固溶元素 Re 通过增加可动滑移面的数量，

降低引发塑性变形所需的临界应力，从而改善钨材料的韧性。SPS 制备的 4 种钨基材料展现出优异的热稳定性，1600 ℃

真空退火 1 h 后，试样的晶粒尺寸和维氏显微硬度均未显著变化。其原因是 Re 溶质原子使钨产生晶格畸变，抑制高温

下钨原子的扩散，阻碍晶界迁移，减缓钨晶粒粗化的动力学过程，从而提升材料的高温稳定性。 
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钨（ W ）作为一种难熔金属，具有高熔点

（3410 ℃）、热膨胀系数小、高温强度好等优异的性

能，已广泛应用于许多高温领域。另外，W 以其高热

导率、低溅射率和低氚滞留率等优点而被视为最有前

景的、能够应用于未来聚变堆高温环境的面向等离子

壁材料。然而，纯 W 存在低温脆性、再结晶脆性、辐

照脆化等不足，严重制约了其低温加工性及应用[1-3]。

研究表明，晶界处偏析的氧、磷、氮等杂质加剧 W 的

低温脆性，导致商用纯 W 的韧脆转变温度（DBTT）
＞400 ℃[4-7]。因此，消除这些有害杂质对晶界的影响，

增强晶界强度对提高钨基材料的性能至关重要。另外，

在聚变堆装置中，中国聚变工程实验堆（China fusion 
engineering test reactor, CFETR）偏滤器区域的稳态热

负荷高达 10~20 MW/m2，且伴随着约 GW/m2 毫秒级

瞬态热负荷[8-9]。稳态热负荷作用下钨基材料表面温度

将超过 1500 ℃，导致纯 W 材料发生显著的再结晶脆

化[10]。因此，为了满足聚变堆中面向等离子体第一壁

材料的实际应用需求，亟需开发兼具低温韧性、高强

度且高热稳定的新型钨材料。 
近年来，人们在提高钨基材料的延展性、强度和

高温稳定性等方面开展了很多研究。其中，微合金

化或弥散强化被证明是提高再结晶温度和改善力学

性能（即降低 DBTT 和提高强度/延展性）的有效方

法 [11-16]。Setyawan 等人[17]通过第一性原理计算发现，

Zr、Hf 和 Re 等过渡金属可以增强 W 晶界的强度。此

外，在 W 中添加少量铼（Re）作为溶质元素可以改变

螺位错核心对称结构，降低位错的 Peierls 应力、提高

位错的可动性，从而提升 W-Re 合金的塑性，达到增

韧效果[18-19]。实验上，Mutoh 等人[20]验证了这一观点，

发现在 W 中加入 5%的 Re 可以提高 W 材料的韧性，

使其 DBTT 从 900 ℃降低至 600 ℃。但是，先前的

研究大多需在 W 中加入高比例的 Re（>5%），而由于

Re 的价格昂贵，不宜高比例添加。此外，聚变中子会

导致 W 嬗变为 Re，形成富 Re 的脆性相[21]，作为面向

聚变堆应用的钨基材料也建议限制 Re 的添加量。 
碳化物、氧化物弥散强化钨基材料是提升材料性
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能的另一种有效方法。研究表明，第二相纳米颗粒，

如碳化钛（TiC）、碳化锆（ZrC）、碳化铪（HfC）、氧

化钇（Y2O3）、氧化镧（La2O3）等添加在 W 基体中，

可以有效提高钨基材料的强度和抗辐照性能[1,22-26]。弥

散强化钨基材料中均匀分布的纳米颗粒一方面可以钉

扎位错和晶界，提高钨基材料的高温强度、抗蠕变性

能和微结构的高温稳定性，另一方面也可以提供高密

度的颗粒/基体相界面作为缺陷俘获阱来吸收辐照产

生的点缺陷，提高钨基材料的抗辐照性能[27-28]。在上

述这些弥散强化相中，ZrC 和 HfC 由于具有较高的熔

点（分别为 3540 ℃和 3890 ℃）和热稳定性，使得它

们在强化钨基材料方面具有更大潜力。在作者之前的

工作中，通过放电等离子烧结（SPS）制备的 W-ZrC
材料的相对致密度为 97.9%，DBTT 在 500~600 ℃，

比纯 W 低约 100 ℃[29]。通过 SPS 制备的 W-Y2O3 合

金在 500 ℃时就具有一定的拉伸延展性，相对致密度

可以达 99%[26]。另外，热轧制备的 W-ZrC 合金板材和

W-HfC 板材的再结晶温度分别为 1300 ℃和 1400 ℃，

高于报道的轧制纯 W 板材（1200 ℃）[30-31]。 
综上分析，如果能将微量 Re 元素固溶至钨基体，

同时再引入一定量纳米尺寸的 ZrC 或 HfC 颗粒将有望

获得高性能的钨基材料。在本工作中，通过机械球磨

的方法将纳米级 ZrC/HfC 颗粒和不同组分（1%，3%）

的合金化元素 Re 引入钨基体，并采用 SPS 制备了

W-0.5%ZrC-(1, 3)%Re 和 W-0.5%HfC-(1, 3)%Re 4 种钨

基材料。研究了不同 Re 含量的添加以及不同种类的

纳米弥散相 ZrC 和 HfC 对钨基材料微观结构、力学性

能及高温稳定性的影响。 

1  实  验 

采用粉末冶金法制备了 W-0.5%ZrC-(1, 3)%Re
（ WZC1R ， WZC3R ） 和 W-0.5%HfC-(1, 3)%Re
（WHC1R，WHC3R）（质量分数）试样。纯 W 粉从

厦门钨业采购，其颗粒尺寸在 400~600 nm，纯度＞

99.9%，从阿拉丁试剂网采购纳米 ZrC 粉、HfC 粉和

Re 粉，ZrC 粉的平均颗粒尺寸 50 nm，纯度＞99%，

HfC 粉颗粒尺寸 600~800 nm，纯度＞99%，Re 粉颗粒

尺寸 1~2 μm。按相应质量分数混合后的粉末在行星球

磨机中，氩气气氛保护下进行球磨。球料比为 1:8，转

速为 240 r/min，球磨 4 h 后得到 WZC1R、WZC3R、
WHC1R 和 WHC3R 合金粉体。随后，采用放电等离子

烧结设备（SE-607，德国 FCT 集团）对球磨后的合金

粉体进行固相烧结。具体烧结工艺参照参考文献[29]。
SPS 烧结的合金样品直径为 20 mm，厚度约为 2 mm。

烧结后的样品密度由阿基米德排水法测定，理论密度

通过含量和密度进行计算，计算时 W、ZrC、HfC 和

Re 的密度分别采用 19.25、6.73、12.2 和 21.04 g/cm3。  
将 SPS 烧结制备的 4 种合金试样通过电火花线切

割切成 4 mm×4 mm×1 mm 的小样品，依次用 400 至

3000 目的碳化硅砂纸对其表面进行机械抛光，然后在

7 个不同温度 1000，1300，1400，1500，1600，1700 ℃
和 1800 ℃下分别真空退火 1 h。退火过程中的加热和

冷却速率均为 10 ℃/min。退火后的试样在室温下进

行加载，载荷为 500 g，保载时间为 15 s 的维氏显微

硬度测试，每个试样至少在不同的区域测试 8 次。  
将SPS制备的 4种合金试样通过电火花线切割成工作

长度为 5 mm，截面为 1.5 mm×0.75 mm 的哑铃型试样[32]。

依次用 400至 3000目的碳化硅砂纸对其进行机械抛光

以 去 除 切 割 引 起 的 划 痕 和 其 他 缺 陷 。 然 后 用

Instron-5967拉伸试验机以 0.06 mm/min的速率在温度

300~700 ℃下进行拉伸测试。另外，为了保证数据的

可靠性，每组拉伸测试至少重复 3 次。 
利用 SU8020 Hitachi 场发射扫描电子显微镜对球

磨后的合金粉体形貌进行观察，同时采用粉末 X 射线

衍射仪对球磨后合金粉的物相进行分析。利用光学显

微镜 ZEISS-AX10 对 SPS 制备及不同温度退火后合金

样品的金相组织进行观察。在金相观察之前，需要将

机械抛光后的样品用 10vol%铁氰化钾和 10vol%氢氧

化钠水溶液组成的腐蚀剂对样品表面进行金相腐蚀。

利用 SU8020 Hitachi 场发射扫描电子显微镜观察 4 种

合金样品表面形貌，同时结合安装在 SEM 上的能量色

散 X 射线谱仪（EDS）对合金样品进行元素分析。为

了定量分析退火后晶粒尺寸的变化，利用蔡司

SIGMA300 场发射扫描电镜的电子背散射衍射

（EBSD）模式对合金试样进行表征。 

2  结果与讨论 

2.1  W-ZrC-Re 和 W-HfC-Re 粉体及块体微结构 

图 1 为 WZC1R、WZC3R、WHC1R 和 WHC3R 合

金粉体球磨后的形貌。从图 1a~图 1d 中可以看出，球磨

后 4 种合金粉体均未出现明显的团聚现象，部分 W 粉仍

保持多边形形态，另外一部分在球磨冲击过程中发生变

形和破碎，形成许多碎片状细小的（<100 nm）颗粒分

散在大的（约 500 nm）颗粒之间。此外，在合金粉体中

未观测到 1~2 μm 的原始 Re 颗粒，可能原因是原始的

Re 粉会在球磨过程中被破碎为细小的颗粒分散在 W 粉

中[18]。随着 Re 含量的增加，WHC3R 合金粉体中细小的

颗粒数量密度增加，这在一定程度上也证明了初始 Re
在球磨过程中被破碎、分散至钨基体中，如图 1d 所示。  

球磨后 WZC1R 和 WZC3R 合金粉的 XRD 图谱如
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图 2 所示。从图 2a 中可以看出 WZC1R 和 WZC3R 合

金粉体在球磨后出现了 4 个特征 W 峰。图 2b 和图 2c
分别是 WZC1R 和 WZC3R 粉体的 XRD 图谱局部放大

图。从图 2b 和图 2c 中可以看出，与标准 PDF 卡片中

W 峰位相比，球磨后 WZC1R 和 WZC3R 粉末中 W 相

的峰位略微向较大角度移动，表明相比于纯 W，WZC1R
和 WZC3R 中存在晶格收缩。例如，球磨后 WZC1R 和

WZC3R 中 W 的（110）衍射峰的位置从标准 PDF 卡片

中 40.268°分别迁移至 40.328°和 40.331°，W 的（200）
衍射峰的位置从标准 PDF 卡片中 58.261°分别迁移到

58.297°和 58.299°。由于 W 原子（原子半径：193 pm）

被较小的 Re 原子（原子半径：188 pm）取代，形成

W(Re)固溶体，W 基体晶格收缩。已有研究结果表明当

Re 的添加量<25%时，室温球磨过程中可形成 W（Re）
的固溶体[33]。另外 WZC1R 合金粉的 XRD 图谱中也检

测到 Re(W)和微弱的 Re2W3C 信号峰。当 Re 含量增加

至 3%时，WZC3R 的 XRD 谱图中检测到比 WZC1R 合

金粉中更强的 Re(W)信号，同时出现了微弱的 Re 信号，

如图 2c 所示，说明部分 Re 原子未固溶到 W 基体。

WHC1R 和 WHC3R 合金粉体球磨后，同样检测到了 4
个纯W 峰，如图 3a所示。同样地，在WHC1R和WHC3R
合金粉的 XRD 谱图中也观察到 W 峰向大角度偏移，如

图 3b 和图 3c 所示，WHC1R 中 W（110）峰和 W（200）
峰从 40.268°和 58.261°分别偏移至 40.364°和 58.331°。从

WHC1R 粉体的 XRD 图谱局部放大图观察到 HfC 的信号

峰，如图 3b 所示。另外，与 WZC1R 相似的是，在 WHC1R
粉体中同样检测到微弱的 Re2W3C 和 Re(W)的信号峰。随

着 Re 含量增加至 3%，如图 3c 所示，WHC3R 的 XRD
图谱中 Re(W)信号增强，并出现 Re 的信号，表明该球磨

条件下，并不能将 3%Re 完全固溶到 W 基体中。 
 
 
 
 
 
 
 
 
 

 

 

图 1  不同合金粉体球磨后的 SEM 照片  
Fig.1  SEM images of different alloy powders after mechanical 

ball milling: (a) WZC1R, (b) WZC3R, (c) WHC1R, and  

(d) WHC3R  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

图 2  WZC1R 和 WZC3R 球磨后粉体的 XRD 图谱 

Fig.2  XRD patterns of the milled WZC1R and WZC3R powders (a); 

locally magnified XRD patterns of WZC1R (b) and 

WZC3R (c)  

 

通过 SPS 制备的 WZC1R 和 WZC3R 合金试样的

致密度均大于 99%，分别为 99.4%和 99.3%，SPS 制

备的 WHC1R 和 WHC3R 合金试样的致密度略低，分

别为 98.1%和 98.4%，4 种合金的致密度均高于纯

W(97.4%)[32]，如表 1 中所示。SPS 制备的 4 种合金致

密度的提高，说明 ZrC、HfC 和 Re 的添加能有效提升

合金的烧结性能，促进致密化。另外，与 W-HfC-Re
合金相比，ZrC 的添加对合金致密化的效果更为显著。

采用扫描电镜对腐蚀后的合金试样进行观察，其 SEM
照片如图 4 所示。从图 4a 中可以观察到 WZC1R 试样

中部分被腐蚀出来的 W 晶界，同时存在少量平整未被

腐蚀的灰黑色区域，如图 4a 中红色箭头所示，而灰黑

色区域包围着被腐蚀出晶界的白色区域（图 4a 中黄色

箭头所示）。通过查阅相关文献，可以推断这些白色区

域是 Re 的偏聚区域[34]。这种 Re 偏聚现象随着 Re 含

量的增加而愈发显著。例如，WZC3R 试样中被腐蚀出

来类似葡萄状晶粒组织的白色区域较 WZC1R 试样中 

2θ/(º) 
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图 3  WHC1R 和 WHC3R 球磨后粉体的 XRD 图谱 

Fig.3  XRD patterns of the milled WHC1R and WHC3R powders (a); 

locally magnified image of XRD patterns of WHC1R (b) 

and WHC3R (c)  

 

显著增加，如图 4b 所示。WHC1R 和 WHC3R 试样中同

样也观察到这种葡萄状晶粒组织的白色区域。与

WZC1R 合金不同的是，WHC1R 和 WHC3R 中白色区域

面积较大，尺寸可达 10 μm，如图 4c 和图 4d 黄色箭头

所示。为了进一步确认此区域的物相，结合 EDS 元素面

扫描和线扫描的方式对 WHC3R 试样进行分析，分析结

果如图 5 所示。从图 5a~5f 中的 EDS 元素面扫结果可以

看出这种葡萄状晶粒组织的白色区域中 Re 信号明显，

同时存在弱的 W 信号，说明由于球磨后，Re 未完全固

溶到 W 基体内，白色区域是一种富 Re 的 Re(W)相。另

外，图 5g 给出了 EDS 元素线扫描结果，其中黄色直线

是线扫描位置。从图 5g 中可以看到，越靠近白色区域

（区域 1），Re 信号越强，W 信号略有减弱，远离区域

1，Re 信号下降，W 信号增强，并且在富 Re 区和 W 基

体之间存在过渡层（即平整未被腐蚀的灰黑色区域）。

结合以上结果及图 3 的 XRD 图谱，可以推测球磨过程

中未完全固溶到 W 基体中的 Re 经过烧结后形成富 Re
的 Re(W)固溶相，而过渡层可能为 Re 与 W 互扩散区。 
2.2  拉伸性能及强韧化机制 

图 6 为 4 种合金试样在不同温度下的拉伸应力-
应变曲线。本工作中制备的钨合金试样的极限抗拉强

度（UTS）和延伸率（El）与其他已报道的通过 SPS
制备的钨基材料在不同温度下的 UTS和 El值均在表 1
中列出。从图 6a 中可以看出，WZC1R 在 500 ℃测试

时表现出典型的脆性断裂，UTS 值约 496 MPa。600 ℃
时，WZC1R表现出 1.4%的延伸率，UTS值为 612 MPa，
比纯 W 提升约 300 MPa，说明其 DBTT 在 500~600 ℃
之间，较纯 W 降低约 100 ℃（纯 W 的 DBTT 在

600~700 ℃）[32]。700 ℃时，WZC1R 的 El 值为 7.3%，

并保持 619 MPa 的高强度，其 UTS 值远高于表 1 中其

他钨基材料[18, 29, 32, 35]。WZC3R 试样在 500 ℃时的

UTS 提高至 728 MPa，在 600 ℃时的 UTS 为 653 MPa，
如图 6b 所示，比 SPS 制备的纯 W 和 W-0.5ZrC 分别

高 344 MPa 和 65 MPa[29, 32]。WZC3R 在 600 ℃和

700 ℃时的延伸率较 WZC1R 表现出显著的提升，El
值分别为 8.8%和 12.7%，说明适量 Re 的添加，能显

著改善合金的延展性。WHC1R 在 400 ℃发生脆性断

裂，UTS 约 527 MPa，如图 6c 所示。当测试温度 
 

表 1  SPS 制备样品的微观组织和力学性能（平均值）及其它文献中 SPSed-W 合金参数的比较 

Table 1  Comparison of microstructure and mechanical properties (average value) between SPSed samples and other SPSed-W alloys 

in literatures 

Materials Sintering 
temperature/℃ 

Relative 
density/% 

Grain 
size/μm 

DBTT/ 
℃ 

Vickers hardness, 
HV/×9.8 MPa 

UTS (MPa)/El(%) 
300 ℃ 400 ℃ 500 ℃ 600 ℃ 700 ℃ 

WZC1R 1800 99.4 1.20 500-600 487 - - 496/- 612/1.4 619/7.3 
WZC3R 1800 99.3 1.37 500-600 480 - - 728/- 653/8.8 537/12.7 
WHC1R 1800 98.1 1.78 400-500 418 - 527/- 510/9.5 415/6.9 372/6.6 
WHC3R 1800 98.4 2.31 300-400 396 535/- 549/13.9 506/22.9 464/11.7 418/7.7 

Pure W[32] 1800 97.4 4.39 600-700 453 - - - 309/- 348/9.8 
WZrC[29] 1800 97.5 4.2 500-600 507 - - 572/- 588/17.6 535/24.8 

WZC-1R[18] 1800 99 2.6 500-600 489 - - 495/- 445/30 470/26 
W-0.5TaC[35] 1800 99.16 3.58 500-550 - - - 225/- 371/40 379/36.3 

2θ/(º) 
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图 4  SPS 制备不同合金样品的 SEM 照片 

Fig.4  SEM images of different SPSed alloys: (a) WZC1R, (b) WZC3R, (c) WHC1R, and (d) WHC3R 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

图 5  WHC3R 试样表面腐蚀后的能量色散谱 X 射线能谱（EDS）元素面扫描及线扫描结果 
Fig.5  Energy-dispersive X-ray spectroscopy (EDS) and element mappings of the surface of WHC3R alloy (a-f); EDS element line 

scanning of W and Re elements on the etched surface (g) 
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图 6  SPS 制备的不同合金在不同温度下的拉伸性能  

Fig.6  Tensile properties of different alloys prepared by SPS at different temperatures: (a) WZC1R, (b) WZC3R, (c) WHC1R, and      

(d) WHC3R  

 

升高至 500 ℃，WHC1R 表现出 9.5%的 El 和 510 MPa
的 UTS，说明其 DBTT 在 400~500 ℃。随着 Re 含量

增加，WHC3R 在 400 ℃时就表现出 13.9%的延伸率，

如图 6d 所示，说明其 DBTT 值已降低至<400 ℃，比

表 1 中其他 SPS 制备的钨基材料均低 100~300 ℃，进

一步验证了 Re 的添加对材料韧性的提升有显著的效

果（包括降低 DBTT，提高延伸率）。 
钨基体中的纳米第二相颗粒可以钉扎晶界和位

错、细化晶粒，实现第二相弥散强化和细晶强化的效

果，进而提高材料的强度。本工作中，在 W 中加入纳

米尺寸的第二相 ZrC 和 HfC 颗粒，以及少量 Re，得

到的 4 种钨合金的晶粒尺寸较纯钨显著细化，因此拉

伸强度较纯 W 显著提升。任等人[36]发现随着 Re 含量

增加，W-Re 合金的韧性逐渐提升。Romaner 等人[37]

通过密度泛函理论计算发现 Re 元素添加改善 W 基体

韧性的原因：Re 原子位于 1/2<111>螺位错核心，会改

变 1/2<111>螺位错的核心对称结构，降低 Peierls 应力，

从而增加可动滑移面的数量，即降低引发塑性变形所需

的应力，从而提升钨基材料的塑性，达到增韧效果[18]。

因此，在弥散强化、细晶强化和溶质元素“Re 效应”

的协同作用下，本工作中通过 SPS 制备的 4 种钨合金

的强度和延伸率得到协同提升，显著优于纯 W。 
2.3  热稳定性及高温稳定性提升机理 

为了研究烧结合金试样的高温稳定性，分别将 4 

种合金试样在 1000~1800 ℃下进行真空退火 1 h，并

对退火后样品的晶粒形貌和尺寸进行表征，对其维氏

硬度进行测试。图 7 和图 8 分别为 WZC1R、WZC3R
和 WHC1R、WHC3R 合金试样在不同温度退火后的金

相照片。4 种合金试样在不同温度退火后的平均晶粒

尺寸和维氏显微硬度在表 2 中列出。从图 7a 中可以看

出，SPS 制备的 WZC1R 合金试样晶粒尺寸较小，平均

晶粒尺寸约 1.2 μm，与 SPS 制备纯 W（约 4.4 μm）相

比，晶粒显著细化[32]，表明少量纳米 ZrC 颗粒和 Re
的添加可以有效防止烧结过程中晶粒的长大。经过

1500 ℃退火后，WZC1R 晶粒尺寸未发生显著长大，

而 SPS 制备纯 W 在 1200 ℃晶粒就出现显著粗化，平

均晶粒尺寸从约 4.4 μm 增加至 5.6 μm[32]，说明与纯

W 相比，WZC1R 试样的热稳定性显著提高。随着退

火温度升高至 1600 ℃，WZC1R 试样晶粒尺寸略有增

加，平均晶粒尺寸约 1.72 μm。当退火温度升高至

1800 ℃，钨晶粒的粗化仍不明显，试样平均晶粒尺寸

维持在 1.94 μm。除了晶粒尺寸的演化，还能看到富

Re 区（金相照片中黑色团聚体）的变化规律：随退火

温度的升高，富 Re 区的尺寸和数密度逐渐减小，说

明高温退火能促进 Re 扩散至 W 基体。对于 Re 含量

高的 WZC3R 合金，富 Re 区尺寸更大，可达 10 μm，

WZC3R 的平均钨晶粒尺寸约 1.37 μm，与 WZC1R 相

比，晶粒没有得到进一步细化，如图 7f 所示，主要原
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f g h i j 

10 µm 

因是团聚的富 Re 颗粒不能充分发挥 Re 细化 W 晶粒

的效果。当退火温度升高至 1500~1800 ℃，WZC3R
晶粒未发生显著粗化，WZC3R 中富 Re 区的尺寸随退

火温度的升高显著减小，如图 7h~7j 所示。 
图8a中WHC1R的金相照片表明，SPS制备WHC1R

试样平均晶粒尺寸为 1.78 μm，大于 WZC1R 的晶粒尺寸

（1.2 μm）。这主要是因为当添加相同质量分数的第二相，

由于 HfC 的密度（12.2 g/cm3）大于 ZrC（6.73 g/cm3），

体积分数则小于 ZrC，最终在弥散强化和细化钨晶粒效果

方面不如 ZrC。当退火温度升高至 1500 ℃，WHC1R 试

样晶粒未观察到显著变化，如图 8c。当退火温度升高至

1600 ℃和 1800 ℃时，平均晶粒尺寸分别增加至 2.94 和

3.7 μm，如图 8d，8e 所示。与 WHC1R 相比，Re 含量更

高的 WHC3R 试样中富 Re 区明显增加，且存在部分尺寸

大于 10 μm 的长条形团聚颗粒，如图 8f 所示，烧结态

WHC3R 的平均晶粒尺寸（约 2.31 μm）较 WHC1R 试样

有所增大。经过 1400~1600 ℃退火，WHC3R 试样晶粒

尺寸未发生明显粗化，而富Re区尺寸明显减小，如图8g~8i
所示。当退火温度升高至 1800 ℃，WHC3R 试样晶粒显

著粗化长大，平均晶粒尺寸为 3.98 μm，如图 8j 所示。 
为了更加直观地显示退火温度对 4 种合金晶粒尺

寸的影响，采用 EBSD 对 SPS 制备及不同温度退火后

合金试样进行了表征，结果如图 9 和图 10 所示。从图

9 可以看出，退火温度<1800 ℃时，WZC1R 和 WZC3R
晶粒未见明显长大，当退火温度升高至 1800 ℃时，

WZC1R 和 WZC3R 试样出现晶粒长大，平均晶粒尺寸

为 2 μm。从图 10 可以看出，WHC1R 试样在 1600 ℃
退火后晶粒发生长大，平均晶粒尺寸由原本的 1.78 μm
增大至 2.94 μm，如图 10a，10b 所示。而 1800 ℃退

火后，WHC1R 试样平均晶粒增大至 3.7 μm。对于  
 

 
 
 
 
 
 
 
 
 
 

 

图 7  SPS 制备的 WZC1R 和 WZC3R 试样在 1400，1500，1600，1800 ℃退火 1 h 后的金相组织  

Fig.7  OM images of SPSed WZC1R (a) and WZC3R (f) samples annealed at 1400 ℃/1 h (b, g), 1500 ℃/1 h (c, h), 1600 ℃/1 h (d, i), 

and 1800 ℃/1 h (e, j) 

 

 

 

 

 

 

 

 

 

 

 

 

图 8  SPS 制备的 WHC1R 和 WHC3R 试样在 1400，1500，1600 和 1800 ℃退火 1 h 后的金相组织 

Fig.8  OM images of SPSed WHC1R (a) and WHC3R (f) samples annealed at 1400 ℃/1 h (b, g), 1500 ℃/1 h (c, h), 1600 ℃/1 h (d, i), 

and 1800 ℃/1 h (e, j)  

a b c d e 

f g h i j 

20 µm 
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表 2  SPS 制备 WZC1R、WZC3R、WHC1R 和 WHC3R 合金在不同温度退火后的平均晶粒尺寸及室温维氏显微硬度 

Table 2  Average size and room temperature Vickers micro-hardness of SPSed WZC1R, WZC3R, WHC1R and WHC3R alloys after 

annealing at different temperatures 

Materials Recrystallization 
temperature/℃ 

Grain size (μm)/HV(×9.8 MPa) 

1000 ℃ 1300 ℃ 1400 ℃ 1500 ℃ 1600 ℃ 1700 ℃ 1800 ℃ 

WZC1R ~1800 1.21/472 1.22/473 1.25/467 1.52/460 1.72/475 1.85/454 1.94/434 

WZC3R ~1800 1.37/477 1.37/480 1.38/479 1.46/480 1.53/495 1.65/472 2.0/393 

WHC1R ~1600 1.78/411 -/420 1.79/418 1.82/417 2.94/386 3.53/- 3.70/387 

WHC3R ~1800 2.32/389 -/389 2.33/399 2.35/400 2.54/384 2.83/- 3.98/371 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

图 9  SPS 制备的 WZC1R 与 WZC3R 试样在 1500、1600 和 1800 ℃退火 1 h 后的 EBSD 结果 

Fig.9  EBSD characterizations of SPSed WZC1R (a) and WZC3R (e) samples annealed at 1500 ℃/1 h (b, f), 1600 ℃/1 h (c, g) and 

1800 ℃/1 h (d, h)  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

图 10  SPS 制备的 WHC1R 与 WHC3R 试样在 1600、1700 和 1800 ℃退火 1 h 后的 EBSD 结果  

Fig.10  EBSD characterizations of SPSed WHC1R (a) and WHC3R (e) samples annealed at 1600 ℃/1 h (b, f), 1700 ℃/1 h (c, g), and 

1800 ℃/1 h (d, h) 
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WHC3R 试样而言，当退火温度<1800 ℃时，其晶

粒未见明显长大，当退火温度升高至 1800 ℃时，

晶粒则迅速粗化，平均晶粒尺寸为 3.98 μm，如图

10h 所示。  
图 11 给出了各试样平均晶粒尺寸和室温维氏显

微硬度随退火温度的变化。从图 11a 和图 11b 中可以

看出，WZC1R 和 WZC3R 在 1500 ℃退火后，平均晶

粒尺寸和维氏显微硬度未发生显著变化。但 1600 ℃
退火后，WZC1R 和 WZC3R 的平均晶粒尺寸随略有增

加，但维氏显微硬度出现反常升高，其中，WZC3R 试

样硬度值增加尤为明显，从 4704 MPa 升高至 4851 MPa，
如图 11b 所示。引起硬度值增加的原因可能是原先团

聚富 Re 区中的 Re 在长时间的高温下发生扩散，固溶

到 W 中带来固溶强化，导致材料硬度的增加。1800 ℃
退火后，由于 WZC1R 和 WZC3R 试样的晶粒进一步

长大，硬度值随之降低，分别为 4253 和 3851 MPa，
表明 WZC1R 和 WZC3R 试样的再结晶温度约

1800 ℃，较 SPS 制备纯 W（1100 ℃）和 W-ZrC
（1200 ℃）得到显著提升[32]。均匀分布在钨基体中

的纳米第二相颗粒（如 ZrC、HfC）通过钉扎晶界，减

缓晶粒粗化的动力学过程，抑制晶粒长大，从而提高材

料的强度和热稳定性[35, 38-39]。Deng [38]和 Li 等人[39]分别

在 W-ZrC 和 W-3Re-5HfC 合金中报道了类似的结果，

高温下 ZrC、HfC 颗粒钉扎晶界，达到抑制晶粒长大

的效果，提高了合金的高温稳定性。另外，王等人[40]

发现固溶元素 Re 能够降低 W 合金中的点缺陷和空位

浓度，同时溶质 Re 导致钨产生晶格畸变，抑制 W 自

间隙原子扩散，从热力学的角度解释了少量 Re 添加

能有效提升钨合金的再结晶温度。Tsuchida 等人[41]通

过实验发现，与纯 W 和 K-doped W 相比，K-doped 
W-3% Re 合金在 1100 ℃退火 3115 h 后，晶粒长大速

率得到明显抑制，进一步证实少量 Re 固溶于 W 基体，

抑制高温下钨原子的扩散，阻碍晶界迁移，减缓 W 晶

粒粗化的动力学过程，从而提升材料的高温稳定性。

因此，W 基体中纳米第二相颗粒（ZrC 或 HfC）对晶

界的钉扎作用和溶质 Re 原子对 W 原子扩散的阻碍作

用，两者协同使 WZC1R 和 WZC3R 合金的再结晶温

度较纯 W 和 W-ZrC 有明显提升。1800 ℃退火后，

WZC1R 晶粒粗化率高于 WZC3R 试样，进一步说明

Re 的添加可以抑制钨晶粒长大速率，进而提高材料的

高温稳定性，这也在 W-5Re 合金中被报道[20]。 
从图11b中可以看到，SPS制备的WHC1R和WHC3R

试样的维氏显微硬度值分别为 4096 和 3881 MPa。在

1500 ℃及以下温度退火，两者晶粒尺寸均没有发生显

著长大，硬度值维持稳定。WHC1R 试样在 1600 ℃ 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

图 11  W 晶粒尺寸和维氏显微硬度随退火温度（1 h）的变化

（虚线表示 SPS 制备样品退火前的 W 晶粒尺寸及硬度值）  

Fig.11  Variations of W grain size (a) and Vickers micro- 

hardness (b) with the annealing temperature (the 

horizontal dotted lines indicate the W grain size and the 

hardness of the SPSed samples before annealing)  

 
退火后，晶粒粗化，其维氏显微硬度相应降低至

3783 MPa，表明 WHC1R 试样的再结晶温度为

1600 ℃。由于弥散强化效果与第二相颗粒的数密度

相关，虽然在 W 基体中分别添加相同质量分数的

ZrC 和 HfC 颗粒，在颗粒尺寸相当的情况下，由于

HfC（12.2 g/cm3）的密度大于 ZrC（6.73 g/cm3），

所以钨基体中 HfC 的体积分数小于 ZrC，导致 HfC
颗粒的数密度不如 ZrC，最终在提升钨基材料高温

稳定性方面不如 ZrC。WHC3R 试样在 1800 ℃退火

后才观察到晶粒显著长大，以及维氏显微硬度略有

降低至 3636 MPa，表明 WHC3R 试样的再结晶温度

为 1800 ℃，说明弥散强化和微合金化的协同作用，

可以显著提升钨基材料的高温稳定性。另外，同样

地，从图 11a 中更能直观地看到 WHC1R 高温退火

时的晶粒粗化率较 WHC3R 试样大，说明添加微量

Re 元素确实能有效抑制钨晶粒长大。  
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3  结  论 

1）SPS 制备的 4 种合金样品中均出现富 Re 的

Re(W)团聚颗粒，Re 含量为 3%的 WZC3R 和 WHC3R
合金中 Re(W)的偏聚现象更加显著。 

2）WZC1R 和 WZC3R 的 DBTT 介于 500~600 ℃， 
制备的 4 种合金晶粒尺寸得到显著细化，WZC3R 在

600 ℃时表现出 653 MPa 的极限抗拉强度和 8.8%的

延伸率。WHC1R 合金样品在 500 ℃时延伸率为 9.5%，

其 DBTT 介于 400~500 ℃。随着 Re 含量增加至 3%，

WHC3R 合金样品在 400 ℃时具有 13.9%的延伸率，

其 DBTT 进一步降低至 300~400 ℃，比纯 W 降低约

300 ℃。其原因是固溶 Re 原子降低螺位错 Peierls 应

力，从而增加可动滑移面的数量，即降低引发塑性变

形所需的应力，从而提升钨基材料的塑性。  
3）SPS 制备的 WZC1R，WZC3R，WHC1R 和

WHC3R 4 种合金样品表现优异的高温稳定性。

WZC1R 和 WZC3R 合金的再结晶温度高达 1800 ℃，

WHC1R 和 WHC3R 的再结晶温度分别为 1600 和

1800 ℃。纳米碳化物 ZrC/HfC 钉扎晶界，一定量的

固溶 Re 原子阻碍 W 原子扩散，两者协同作用，有效

抑制 W 晶粒长大，提高钨基材料的再结晶温度。 
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Mechanical Properties and Thermal Stability of W-ZrC/HfC-Re Alloys Fabricated by 
Spark Plasma Sintering 
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(1. Institute of Solid State Physics, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei 230031, China) 

(2. University of Science and Technology of China, Hefei 230026, China) 

 

Abstract: Four kinds of tungsten-based materials, W-0.5wt%ZrC-(1, 3)wt%Re (WZC1R, WZC3R) and W-0.5wt%HfC-(1, 3)wt%Re 

(WHC1R, WHC3R) were prepared by mechanical ball milling and spark plasma sintering (SPS). The microstructures, mechanical 

properties and thermal stability were investigated. The WZC3R alloy exhibits a high ultimate tensile strength (UTS) of 728 MPa at 500 °C 

and an UTS of 653 MPa at 600 °C, which are about 2.1 times higher than that of SPSed pure W. The uniformly distributed nano-sized ZrC 

and HfC particles can pin the grain boundaries and dislocations, thereby increasing the strength and inhibiting grain coarsening. The 

WHC3R exhibits a total elongation of 13.9% at 400 °C, and its DBTT is in the range of 300-400 °C, which is about 200 and 300 °C lower 

than that of SPSed W-ZrC and pure W, respectively. The addition of the solid solution element Re improves the toughness of W materials 

by increasing the number of available slip planes and reducing the critical stress needed to start plastic deformation. In addition, the four 

alloys show excellent high-temperature stability with no significant change in grain size and Vickers microhardness even after heat 

treatments at temperatures reach up to 1600 °C. The Re element solidly dissolved in W leads to lattice distortion; it can inhibit the 

diffusion of W atoms at high temperatures, hinder the migration of grain boundary, and slow down the kinetic process of W grain 

coarsening, thus enhancing the high-temperature stability of the W materials. 

Key words: tungsten alloys; solution strengthening; dispersion strengthening; mechanical properties; thermal stability 
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