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Fig.1 Schematic diagram of the geometric model of the IM and bone

tissue
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Table 1 Model geometry parameters

Part Parameter Value
Abutment height, L,/mm 5.5
Implant neck height, L,/mm 2.8
Length of internal bone segment, L.,/mm 10
Implant . )
Conventional neck diameter, D,/mm 4.8
Body diameter, D,/mm 4.1
Abutment angle, ¢/(°) 6
Mandibular height, /,/mm 24
Cortical bone thickness, H,/mm 2
Cancellous bone height, H,/mm 20
Bone
Mandibular width, #,/mm 13
Alveolar ridge width, W,/mm 6
Radius of edge fillet, R/mm 10
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Table 2 Material properties of implant Table 3 Material properties of bone tissues™”
Material E/GPa v UTS/MPa Bone tissue E/GPa Poisson’s ratio G/GPa
Ti6AI4VI) (1#) 110 0.35 1100 v.=03
E=12.6 ? G =4.85
Zr30Ti (2#) 76 0.35 952 * V.= 0.3 e
Zr22NDb (3#) 59 0.35 611 v =0.253
co E=12.6 G =57
Zr24Nb (4#) 30 035 800 v v,=0.39 :
v_=0.253
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TE 2% 1 AR, BRAMREZE /b7 2 AN TE 58 R A %7005 ‘
N uns o N =0.322
1], IF HADRLE P TN~ 1 1 77 1o, PR i 2H 44 ) E=1.148 Y 0322 G_=0.434
v =0.

FORMAK A O AN S 3 50, B 0P,

o, —Cn C, C; 0 0 0 &

0, Ch Cp Gy 0 0 0 le

03| _ Ci Cy Cy 0 0 0 |l& D)

o, 0 0 0 C, © 0 | &,

05 0 0 0 0 Cs 0 |lé&s

O ) 0 0 0 0 Cgllés

X1 IEAZ 25 1) SRR, v AR ) R B e 2

Z A E R R,

Cy :El(l T Hos X:“32)V (2)

C22:Ez(1 VT X,U31)V 3

Cy :Ea(l T Mo Xﬂzl)V 4

C12:E1(ﬂ21 + iy Xﬂzs)y &)

Cp :El(ﬂ31 + 1y Xﬂ32)V (6)

Cy =E2(/‘32+/‘|2 X/‘sl)y D

Cu=0Gy, (8)

Css =Gy 9

Cos = Gy QL))
! an

yil_ﬂ12Xﬂ21_ﬂ23Xﬂ32_ﬂ31Xﬂ13_2></‘21></‘32></‘13

12 3 P BB LM R S H R s VAR B AT A
EE T hrxyz 5 B AR 1.2.3 X R, [R] N 5453
(R AA R Z8 A o D) T A5 L R A 2R ) NI FE R O Tt
B, MR APUR.

A AR R G0t 2 AN R, B IC A 2 R A AE
2N M B C A (e S o 0 AR AT, i S i
R AR - B ST B BE AL LR S . Y R
PRI G B IR RE AR E Rl AR A0 B 4 202 TR) S B 5
IR A AT UK B 5T B R 5 R[] 4 e 26
RV E NG E LR (Tie) , BMBGE B AL ZUR AN A AL AR A2
o GRHUK /N 250 N AT S it T8 e & 45 i
T ) b AR AR 3 5 41 A B R TR, gk 5 [l g 2

x4 BEAMBRIEERE R

Table 4 Stiffness matrix coefficients for bone tissue materials™”

Stiffness matrix coefficient CO CA
Cy, 17379.48 1281.69
C,, 17379.48 270.22
Cy; 27016.27 1281.69
Cy, 7687.17 16.95
Cp 9775.99 412.87
C,, 9775.99 8.35
Cy 4850.00 68.00
Css 5700.00 434.00
C 5700.00 68.00
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=N

2 INET A P R
Fig.2 Loading direction (a) and schematic diagram of the mesh (b)
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Table 5 Number of elements in the model

M CO CA Total
134 174 97 194 176 777 408 145

S, Mises
(Avgerage: 75%)
+6,000e+01
.501e+

S| +3s0se401
— 3 ghee:

S, Mises
(Avgerage: 75%)
+7.000e +01
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- 44.0842401
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<[ +2.626a+00
+2.251e+00
+1.877e+00
+1.502e4-00

+2.662e-03

I3 3 BN T RIEAR B0 R TR Mises B /) 43 Af
Fig.3 Distributions of Mises stress of IM (a,—a,), CO (b,—-b,), and

CA (c,—c,) under vertical loading conditions
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Fig.4 Distributions of Mises stress of IM (a,—a,), CO (b,-b,), and

CA (c,—c,) under oblique loading conditions
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Table 6 Maximum Mises stress in IM, CO, and CA

Load E/GPa IM/MPa CO/MPa CA/MPa
110 75.25 86.33 4.63
76 77.44 89.23 4.57
Vertical
59 79.26 91.54 4.51
30 85.36 98.40 423
110 336.1 2234 6.57
76 346.0 262.7 6.56
Oblique
59 354.5 294.7 6.57
30 385.0 400.2 6.79
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S, Mises
(Average: 75%)
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+2.1598401
+1.440e+01
+7.2070400
+1.357e-i

S, Mises
(Average: 75%)

+1.861a402
16752402
+ +
+1/3032+02
+
+9.3072+01
+7. 01
585 +
+3.7232+01
- +1.062e +01
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Node Sequence Node Sequence

Node Sequence Node Sequence

K5 BT T BT E S A CA-B J5 7)) R SE 1 75 17 B2 /3 CC-D J7 1)) B2 A3 5 AR ERART T B J0 R S 1) CA-E 5 7)) B A 32 H 5 1) B2 /3

(C-F 77 [ f 182y

Fig.5 Mises stress distribution in CO under vertical loads (a) and Mises stress in buccolingual direction (A-B direction) (b) and mesial-distal

direction (C-D direction) (c); Mises stress distribution in CO under oblique loads (d) and Mises stress in buccolingual direction (A-E direc-

tion) (e) and mesial-distal direction (C-F direction) (f)
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Fig.6 Maximum Mises stress in the IM and its percentage relative to

the material strength under oblique load
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Table 7 Maximum stress in CO under two loading conditions

(excluding 0.1% stress singular nodes) (MPa)

Vertical Oblique

Material Mises Mises

Principal stress

Principal stress
stress stress

Ti6Al4V 3929 392 4368 9874 6045 -111.7

Zr30Ti  38.84 38.17 —43.25 108.2  76.34 —-129.42
Zr22Nb 3837 3793 4254 1149  88.96 —-142.84
Zr24Nb 3596 34.87 -39.57 122.5  129.81 -187.77
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Table 8 Increase of maximum stress in the IM as well as average

stress and stress difference at the IM-CO interface

Maximum stress Average stress at interface

Material

Stress
M M CO
difference
Zr30Ti 2.98 -8.85 12.75 16.82
Zr22Nb 547 -15.33 122.94 29.45
Z124Nb 14.55 -32.90 155.11 65.41
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Finite Element Study on Static Loading of New Medical Zirconium Alloys

Hu Lijuan, Wang Zixuan, Qiang Yuanyuan, Lin Jiamao, Shi Jin, Yao Meiyi, Xie Yaoping
(Institute of Materials, Shanghai University, Shanghai 200072, China)

Abstract: The effect of material elastic modulus on stress and strain distribution in implants and bone tissue was investigated. Utilizing dental
manufacturer and clinical statistical data, implant and mandible bone models were established. Material parameters for prepared Zr30Ti and
Zr22ND alloys were obtained through tensile testing, with Ti6AI4V (elastic modulus: 110 GPa) and Zr24Nb (elastic modulus: 30 GPa) selected as
contrasting materials. Bone tissue was modeled using orthotropic material properties closer to real characteristics. Vertical and oblique loads were
applied according to ISO 14801 standards, with a tilt angle of 30°. All studies were referenced against Ti6Al4V. Results show that the decrease in
implant elastic modulus detrimentally affects its load-bearing capacity under oblique loads, with stress increments for Zr30Ti (76 GPa), Zr22Nb
(59 GPa), and Zr24Nb (30 GPa) of 2.98%, 5.47%, and 14.55%, respectively. However, maximum stresses still remain below their strengths (952,
611, and 800 MPa). The stress transmission from implants is primarily borne by cortical bone, with maximum stress increments in cortical bone
under oblique loads for Zr30Ti, Zr22Nb, and Zr24Nb of 17.59%, 31.92%, and 79.14%, respectively. The risk of cortical bone overloading
increases with decrease in implant elastic modulus, but the stresses generated by Zr30Ti and Zr22Nb within cortical bone remain below cortical
bone strength, ensuring favorable application safety. The stress transmitted from implants to cortical bone increases and becomes more uniform
with decrease in elastic modulus, with average Mises stress increments at the implant-bone interface for Zr30Ti, Zr22Nb, and Zr24Nb under
oblique loads of 12.75%, 122.94%, and 155.11%, respectively; while the stress difference at the interface for implant-bone decreases by 16.82%,
29.45% and 65.41%, respectively. This is attributed to larger deformation zones within implants with lower elastic modulus, where under oblique
loads, the internal maximum strains in the neck region of Zr30Ti, Zr22Nb, and Zr24Nb implants are 2 times, 2.6 times, and 4.9 times greater than
that of Ti6Al4V, respectively, with minimal differences in modulus between implants and bone tissue, promoting more coordinated deformation at
the interface. Thereby, this can promote stress transfer to cortical bone and reduce interfacial stress difference. With decrease in elastic modulus,
the stress at the bottom of cancellous bone implant sites gradually decreases, and the overall stress is concentrated in the upper part. The stress
distribution of the cancellous bone in Zr30Ti and Zr22Nb zirconium alloy implants is more uniform.

Key words: dental implant; finite element analysis; medical zirconium alloy; elastic modulus; stress distribution
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