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Fig.6 Mechanical properties of 5-pass ECAB sheet after annealing under different deformation paths: (a) engineering stress-engineering strain

curves; (b) strain hardening rate curves

F1 TEIER IR ECABIR AR M6k

Table 1 Mechanical properties of annealed sheets under different deformation paths
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Effect of Equal Channel Angular Bending on Microstructure and Properties of AZ31
Magnesium Alloy Sheet

Ge Shujin', Chen Shuaifeng’, Deng Siying®, Zheng Li', Song Hongwu®, Zhang Shihong’
(1. Shenyang University of Technology, Shenyang 110870, China)
(2. Shi-changxu Innovation Center for Advanced Materials, Institute of Metal Research, Chinese Academy of Sciences, Shenyang 110016, China)

Abstract: The equal channel angular bending (ECAB) of AZ31 magnesium alloy rolled sheet (2 mm) under different paths was conducted at
150 °C. The evolutions of microstructure and mechanical properties of the sheet were investigated after 5-pass ECAB along the same path, normal
direction rotation path and rolling direction (RD) rotation path. The results show that after 5-pass ECAB, a large amount of extension twinning
(ETW) and a certain amount of contraction twinning (CTW) and double twinning (DTW) are introduced into the sheet, which can effectively
improve the basal texture of the base plane. After annealing treatment, the elongation of the sheets undergone ECAB is obviously improved. In
particular, the area fraction of ETW in the deformed sheet rotated 5 passes around the rolling direction (RD) can reach 28.74%, and after
annealing, the elongation can reach 28.8% with a tensile strength of 235.7 MPa. Compared with the original sheet, the relative increase ratio of the
elongation is 57.4%, while the tensile strength is only 3.8% lower.

Key words: magnesium alloy sheet; equal channel angular bending; basal texture; twinning; mechanical property
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