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Table 1 SLM process parameters

Laser Forming Scanning  Spot diameter/ Scanning
power/W thickness/um speed/m-s’ pm interval/um
170 20 1.6 50 80
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\ Tensile specimen

Compression specimen

1 SLM TC11 Bk A s i 77 5 Sl F kI 5
Fig. 1 Forming scheme (a) and specimens selection scheme (b) of
SLM TCl11 titanium alloy
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2 WM ISR G 4 SHPB AR B
Fig.2 SHPB device of AM titanium alloy
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K3 SLM TC11%k% 4 OM i
Fig.3 OM images of SLM TCI1 titanium alloy: (a) longitudinal section of HD specimen, parallel to the X-Y, plane in Fig.1a, (b) longitudinal

section of VD specimen, parallel to the X-Y, plane in Fig.1a, and (c) enlarged view of the longitudinal section of VD specimen in Fig.3b

K4 SLM TCI1 8k 4 SEM I
Fig.4 SEM images of SLM TCI11 titanium alloy: (a) axial cross-

section of HD specimen, parallel to the X-Y, plane in Fig.la, and
(b) axial section of VD specimen, parallel to the X-Y; plane in

Fig.1a

931 MPa. 1309 MPa #18.6%, il VD i AH Xt 87 (1) 77 2% 1
AEHHE N 902 MPa. 1228 MPa 18.9%. AHLLT VD ikt
HD {1 FL A 5 v A 5 A A (Y ¥ 2 , 31X 5 SLM TC 11
G E P RMAHRHS A EFE YN R . SLM TC11
R  HA VDT 5 1 AR AT AR B R, TERIAE B i
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TEFATE R T A I T 0, IR 5 MRS, HD
FAR A R R il 2 T P A0 AR B AR RL L T VD Hir
R BB A Al T AT TR ) A B SR RL, HD iz ik

1400 b
1200+
1000+
800+
600~
400+

Stress/MPa

200, —=—HD specimen
—— VD splecimen

0 1 I
0.00 0.02 0.04 006 0.08 0.10
Strain

5 SLM TC11 Bk S fo W R (AT 30 I 7127 T g
Fig.5 Overall tensile fracture morphology (a) and mechanical

properties (b) of SLM TC11 titanium alloy
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TR B A B2 )R B oKL, X RS A B R A S
I a7 AR “EAG” , PRI VD S AR A 2 I H e i 2
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3.3 EhSESEMERE

F2 R 7 HD M VD AT 5 21 s 52 1) Pk 45
B BT MR AR S PR 28 AR W, B 5 A8 B 2
A AR T R A AR T, SLM TC1L KA &
TEB)AS H A I 2230 HH 305 1 AR 22 1 PR AN

6 4 SLM TC11 £k & 4= 75 5 4N #0E BT i AR
2N AR TR T A PR 0 A AR 2R O R AR 28 - AR I 2 3
8. 6 FR A AT 40, SLM TC11 8K A 4 gk v 48 5
TEARTE 1k R o AN CRFFE 2 5 KA 4 (VR B 7 AR B 1 2
JRE VO AR I LE N AT Gy 1 B B SR I v AR AL
XA T IR & 4 B 48 2 FE I S R T o K

## Bailey-Hirsch 23k X, A7 585 % B2 1 T+ 25 2 35 e
WARE JEE RS E o 24 e RS 72 B S8 R A BRI, ARk sk
NFRSBTEHY B, i LA AL R P A A5 T R B, A
1173 BOM B AR R FFAK . e i LB A DU T [ X6t
SLM TC11 £k & &8 25 H 48 1 54T N 52, 3 BRI
ABM N A3 B T W 1 3 AR R 43 BT, R SR
FEONAG P I 3, RN R L 9.7 1 14.6 FH
20 m/s , 1M HEE B AR 2 2 24 740 1400 F12500 s, J& 4L 5
T BT 0K 3 AN B R Ak g

K17 g7~ 1 HD A VD iR A EAR- - im IR A8 2R
B NS5 382 2 SR8 A 375 SR PR T2 FE1 L SLME TC AR 4
FEIH 25 1) [R5 T RRAE , A [ 0 0 B R BN 5%
HA AL R AE , HD 5 VD AR R (1 N 55
fik o T 42058 35 us, HD AR & B RS2 (A1 208
42.8 ps, M VD i {4~ & B e 2200 3] ] £ 49 43 ps. HD

R2 EEREKIWERLD

Table 2 Summary of dynamic compression experimental results

Build Loading speed/ Strain rate/s Axial plastic Build Loading speed/ Strain rate/s’ Axial plastic
rain rate/s rain rate/s
direction m-s’ deformation/mm direction m-s’ deformation/mm
HD 9.68 737 0.08 VD 8.73 629 0.05
HD 10.75 814 0.16 VD 9.74 739 0.10
HD 14.9 1466 0.33 VD 14.53 1320 0.28
HD 19.2 2358 0.56 VD 18.71 2213 0.52
HD 20.01 2580 0.66 VD 19.93 2580 0.62
3000+ a 0.3 a
2500} 8'? s %
‘v " ‘I )
3 20001 % 0.0 35‘.,”m 42.8 um A “‘.\.
& e \ \W
.£ 15001 £-0.11 \ i \ /
£ > ) I AN i
% ) -0.2+ ' ==
1000 ; " B =5
v -03r V= ——9.68m/s
500 i 04L N ---149m/s
* —20.01 | 05 - | —;—--20.01 m/ls
(9.00 0.05 0.10 0.15 0.20 0.25 ' 6100 6200 6300 6400
Strain Time/us
3000 b 0.3 b
2500 v v, 0.2
= r "vvvvvvavv
2 20001 * y > O 3am By
5 4 A‘AA g)n 00 e
% 15007 v Z 01} \ ‘/
= & ‘M o Y. \ :I'I
% 1000 favs y e 873 02} N
™S Ao 974ms i H
s00F 5% S 1453 mis <03 N e 974 m/s
Py e "
0 -3 ] : , s . . ——-19.93m/s
0.00 0.05 0.10 .0.15 0.20 0.25 6100 6200 6300 6400
Strain Time/ps

Bl6 SLM TCI1 4k A 3l A H 4 2% 58-I A% 1l 25
Fig.6 Dynamic compressive strain rate-strain curves of SLM TC11

titanium alloy along different directions: (a) HD and (b) VD

7 SLM TC11 £k & 3h A 4 B 18
Fig.7 Dynamic compression waveforms of SLM TC11 titanium alloy
along different directions: (a) HD and (b) VD
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FEINAR M

K] 8 4 SLM TC11 2K 4 B &5 IR 48 N /7 - AR i 45
SLM TC11 4K A 41 2 45 i 4 I 72 AL H 588 38 119 7 W0 4% 1)
[P, E I LN N AR 2, HD A1 VD iR 4 2 81 H i T
— B RFE RN IEYE o KA A IR I AR Ak R R O 15
PHRHE IR I dh s B BER I i ) 2 i, (H T
BR G4 B 1 v N AR R R A LM LR R 5 AR e
TR, X T B AR T M B DR FEZR AR O R
SLM TC11 kA & 307 R 4a stk Be i U1 e i B R 00 R
Pt . TR B AT A S B B et 36 380 98 P e
TEBY B S » HD A VD AR {75 58 1 BE (19 80 . 7 R R 0
LT &7 BURHAIE , 7E 3G M 1)1 Ti-6A1-4V K& &3 &
45 I [ RE AT DUOWESE BRI “SF & 7 BORRIER Y, X —

<
(=
2
S 8001 —a—7375"
2 600 —o—8145’"

400 —a— 1466 5!

—v—2358 5!
200 —+—2580s"
0 1 1 1 1
0.00 0.05 0.10 0.15 020 0.25
Strain
b

<
a
s
A L
g 800 —=—629 5!
©»n 600 —o—73957!

400 —— 13205

200 —v—2213 5!

——2500 5!

0 1 1 1
0.00 0.05 0.10 0.15 020 0.25
Strain

K8 SLM TCI1 k& sl IR 4 B /)M A2 Hh £
Fig.8 Dynamic compressive stress-strain curves of SLM TC11

titanium alloy along different directions: (a) HD and (b) VD

RGBT ILAE T SLM TC11 8k & 4 76 50 25 B 4ii
7 AR (0 B AR T T Ak Dyl T 5 BRI 2 0 SR K, T A
AN S AR REAL AR L5 4, BRI B B T R FFAE
—MNBUNTEE P, PRLR I R e AR T A . Bl N
BB )T, MBI P 2 B IE TR

3R 7 HD M VD AR AEAR- -y N BN AR 32 R
FR K R S 77 FRRK R 2 3%, W] DL Hy SLM TC 11 K5 4 B
A I 11 I AR e 5 1 RN AR 3 I AN R B g AR
BINET , KA 42 2T BE R IR AR R R g AR PR AR

EAFE 2 , HD AR E N # N AL 2 ) 737 57 34
21466 s Ja , PR 7y EFHE 73 EE D 14.48% , T 0 28 S
A5 3R 1466 s BN 3 2580 s F P2 AE T 2.7% AR R S 5
BT 5 b s VD PR AN A B R IR R S A B
T 23 EE 23 500 0 14.20% F113.17%. B BR N 3 B TFE 2
L P B AR A D 18 7 8 2R (1 4 v A 4 TG PR A PO 385
A BR B A7, BB A8 6 50 A4 350RETE 15y AR %6 3 25 R 4 5
AN

7 Ho A I AL 3 R A S B0 A5 R 4 v [ RE A 82 311X
— L%, LDED Ti-6Al-4V K& & (£ NN A2 2 ) 500 57!
N3] 1500 s 5 BRI 5 BT E 2 N 8.11%, 1INk,
AR #1500 s7 38 0 2] 3000 s B ED FE AR TR R B
719 SLM Ti-6A1-4V £k £ & 75 IN 4 B4R 26 ) 1340 s 3
hn304290 s 5, BRI 71 BT A 53 L6 8.47% , TN M.
A5 2 M 4290 s HEINF] 6370 s FEAE T 5.21% AR R B
I ETHE R X IR AR R B S AR Eh AR T
REMEA G, EREA A 48 2% FE HE A e PR G, i T i
(1) A7 A 5 M DA I 0 052 78 238 8 v 1 384 00 (] B g v A
2 TR >R 14 BN - 2 7= A AL, B v R 0
JE 5 SR T R F R A, R Z ) B R 8 S5 ek
AR PR A7 o

4 ThiSELRAANEH

SEM I BR J RR S RH RE DIRE %
fm 7584 (grain boundary strengthening, GB strengthening)
3 3 A R SRR A < A 9RO A R R
A 2 (1 I, IR DA K S A7 £ 2 3, & S sk,
S BURY 5 S 4 {E FT BL A Hall-Petch 9% 28 R 3R =M,

Aoy = Ky (d, 7 =dy'?) C))
Horb, Aoy A RLARAL SRS Y i AR5 B2 48 &, Ky 24 Hall-

#3 SLM TC11 k& E NS ELER IR B S1F04% PR 2 22

Table 3 Dynamic compressive ultimate stress and ultimate strain of SLM TC11 titanium alloy

HD VD
Strain rate/s™ Ultimate stress/MPa Ultimate strain Strain rate/s™ Ultimate stress/MPa Ultimate strain
737 1443 0.045 739 1465 0.044
1466 1652 0.116 1320 1673 0.105
2580 1697 0.208 2500 1726 0.203
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Petch %40, d, AN R4 5 A8 S bLRST  d AN
AP R T RS 8 K e 9 0.75 MParm 9,

BAEAS [F) #2103 B PR AL 7 A S X, X
PR 2 T B 3 RUVE N B8 = A0 A B, XA
RETSUEM B, FR ARG 7 HAh A 85 a3l o A4 i 4k
518 B 7 BER M IX — 1 4 5, AL 5 b (dislocation
strengthening) 57 ik {H %& T~ 3 4 1) Bailey-Hirsch % 1A 2
1O THEH,

Aoy = MaGh [p (10
Hor, Ao ALETSRAL T I JiE R B2 1 &, MO R B &
 (3.06) , a N A% & % 03), b N Burgers K &
(0.289 nm) , G A B V) Ak & (45 GPa) 1, p N i 4l 2%
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Fig.10 GND density distributions of SLM TCI11 titanium alloy compression specimen: (a) HD-L, (b) HD-H, (c¢) VD-L, and (d) VD-H
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Build direction Model A B n C E F M
HD J-C 931.75 1437.20 0.476 0.0239 - - -
HD J-C modified 931.75 1437.20 0.476 0.0611 613.52 0.9973 0.2825
VD J-C 902.79 804.76 0.323 0.0306 - - -
VD J-C modified 902.79 804.76 0.323 0.0526 616.12 0.9973 0.3567
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Dynamic Compression Behavior and Strengthening Mechanism of Selective Laser Melted
TC11 Titanium Alloy

Ye Xiaojun'?, Xu Jianlong’, Xiao Xianfeng’, Fu Yanshu’
(1. Nanchang Institute of Science and Technology, Nanchang 330108, China)
(2. Nanchang University, Nanchang 330031, China)

Abstract: TCI11 titanium alloy manufactured by selective laser melting (SLM) technique has excellent specific strength and broad application
prospects in the aerospace field. By conducting quasi-static tensile and dynamic compressive mechanical experiments on SLM TC11 titanium
alloy that built in horizontal and vertical direction, the mechanical behavior of SLM TCl1 titanium alloy under series strain rate loads was
investigated. Based on EBSD testing, the effects of grain boundary strengthening and dislocation strengthening mechanisms on the dynamic
compressive strength of SLM TC11 titanium alloy were explored. The results indicate that the grain boundaries o in the horizontally deposited
specimens tends to aggregate cracks then exhibit lower plasticity during quasi-static tension. SLM TC11 titanium alloy exhibits significant strain
rate strengthening effect and strong macroscopic isotropy during dynamic compression. Adiabatic temperature rise will cause thermal softening,
which competes with strain hardening and then leads to a “plateau” characteristic in the flow stress plastic stage. Through statistical analysis of
grain size and geometrically necessary dislocation density of dynamic compression specimens, it is found that the dislocation strengthening
mechanism is the main strengthening mechanism of SLM TC11 titanium alloy during dynamic compression. Taking into account the effects of
strain hardening, strain rate strengthening, and thermal softening, a J-C modified constitutive equation with accuracy higher than that of the J-C
constitutive equation is proposed, which can accurately describe the dynamic mechanical behavior of SLM TCI11 titanium alloy.

Key words: selective laser melting; strengthening mechanism; constitutive equations; dynamic compression; titanium alloys
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