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Fig.1 Microstructure of TC4 titanium alloy substrate
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Table 1 Chemical composition of TC4 titanium alloy substrate

and TC4 titanium alloy wire (Wt%)

Alloy C O N H Al v Fe Ti
Substrate  0.02  0.14 0.010 0.0019 6.36 4.20 0.06 Bal.
Wire  0.015 0.16 0.012 0.0016 599 4.17 0.14 Bal
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Table 2 Parameter of additive manufacturing

Scanning Wire feed Electrical Average Heat input/
speed/ speed/ arc voltage/ o
1 1 current/A J-mm
m-min m-min \%
0.3 6 154 233 502.35
R 3 ARALIBHIEE
Table 3 Regime of heat treatment
Sample .
Heat treatment regime Heat treatment type
number
HT1 600 °C/2 h/air cooling (AC) i
Annealing treatment
HT2 850 °C/2 h/AC

HT3 950 °C/1 h/AC+600 °C/4 h/AC Solution aging
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Fig.2 Schematic diagram of experimental process of hybrid

manufacturing
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Fig.3 Schematic diagram of microhardness test site distribution (a) and size of tensile specimen (b)
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Fig.4 Electrochemical specimens (a) and schematic diagram of the three-electrode system (b)
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Fig.5 Macromorphologies of the bonding zone of hybrid-manufactured specimens under different heat treatment regimes: (a) as-deposited,

(b) HT1, (c) HT2, and (d) HT3
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Fig.6 Microstructures at the bottom of the bonding zone of hybrid-manufactured specimens under different heat treatment regimes: (a) as-

deposited, (b) HT1, (c) HT2, and (d) HT3
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Fig. 7 Microstructure at the middle of the bonding zone of hybrid-manufactured specimens under different heat treatment regimes: (a) as-

deposited, (b) HT1, (¢) HT2, and (d) HT3
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Fig.8 Microstructures at the top of the bonding zone of hybrid-manufactured specimens under different heat treatment regimes: (a) as-deposited,
(b) HT1, (c) HT2, and (d) HT3
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Fig.9 Length-width ratio of a-phase at the top of the bonding zone of

hybrid-manufactured samples under different heat treatment

regimes
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Fig.10 Microhardness of the bonding zone of the sample hybrid-

manufactured under different heat treatment regimes
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Fig.12 Macro morphologies of fracture position of tensile specimen of TC4 titanium alloy hybrid-manufactured under different heat treatment

regimes: (a) HT1, (b) HT2, and (c) HT3
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Table 4 Room temperature tensile properties of TC4 titanium

alloy hybrid-manufactured by different heat treatment

regimes
Sample Yield strength/ Tensile )
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number MPa strength/MPa
HT1 925.6 964.1 10.1
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HT3 948.0 974.9 10.5
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Fig.13 Fracture morphologies of TC4 titanium alloy hybrid-manufactured by different heat treatment regimes: (a,, a,) HT1, (b,, b,) HT2; and

(c,, c,) HT3
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Fig.14 Potentiodynamic polarization curves of different regions of TC4 titanium alloy fabricated by hybrid manufacturing: (a) as-deposited state
and (b) heat treatment state (AR-additive manufacturing region; BR-bonding region; MR-matrix region; HT-solution and aging hot

treatment)
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Fig.15 Microstructures of different regions of as-deposited (a—c) and heat treated (d—f) TC4 titanium alloys: (a) matrix region, (b) bonding region,

(c) additive region, (d) HT-matrix region, (¢) HT-bonding region, and (f) HT-additive region
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Fig.16 EIS equivalent circuit diagram for hybrid-manufactured TC4

titanium alloy components
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Fig.17 Impedance spectra of different regions of hybrid-manufactured TC4 titanium alloy: (a) as-deposited state and (b) heat treatment state
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Fig.18 Bode diagrams of different regions of TC4 titanium alloy: (a) Bode plots of as-deposited specimen, (b) phase Bode plots of as-deposited

specimen, (c) Bode plots of specimen after heat treatment, and (d) phase Bode plots of specimen after heat treatment
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Table 6 Fitting value of each circuit element in different regions

Region R/Q:em’  CPE-Yo/Q'-cm” nf’ R/Q-cm’ CPE,-Yo/Q"'-cm™ ndl R /Q-cm’
AR 18.97 2.64x107 0.9733 100.7 6.11x10° 0.601 1.25%10°
BR 13.24 9.09x107 0.9224 323.6 5.01x107° 0.661 1.78x10°
MR 3.558 3.44x10° 0.9588 22.22 7.58x10° 0.564 6.81x10"

HT-AR 4.93 5.69x107 1.0000 2.54x10* 4.19x10° 0.790 4.06x10°

HT-BR 5.72 3.34x10° 0.8944 1.31x10* 1.02x10° 0.767 3.24x10°

HT-MR 5.48 3.63x10° 0.8126 2.97x10* 6.09%10° 1.000 4.60x10°
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Effect of Heat Treatment on Microstructure and Properties of Forging-Additive Hybrid-
Manufactured Bonding Zone of TC4 Titanium Alloy

Zhang Jun', Yang Peizhi’, Yang Haiou®
(1. College of Materials Science and Engineering, Xi’an Shiyou University, Xi’an 710065, China)
(2. QingAn Group Co., Ltd, Xi’an 710077, China)
(3. State Key Laboratory of Solidification Technology, Northwestern Polytechnical University, Xi’an 710072, China)

Abstract: Samples were deposited on TC4 titanium alloy forged matrix by arc fuse additive manufacturing technique. The effects of different heat
treatment on the microstructure and properties of the bonding zone of hybrid-manufactured samples were studied. Meanwhile, the corrosion
resistance of different regions of the samples after heat treatment was also investigated. The results indicate that with the increase in annealing
temperature, the o phase in the binding zone has a certain degree of coarsening, and some equiaxed a phase appear at the bottom of the bonding
zone, while the acicular martensite o' phase at the top of the bonding zone decomposes. After solution aging treatment at 950 °C/1 h/air cooling(AC)+
600 °C/4 h/AC, the non-uniformity of mechanical properties in the bonding zone is improved, maintaining a fracture elongation of 10.5% while
having the highest yield strength of 948 MPa. The comprehensive performance is better than that of samples annealed at 600 and 850 °C. On the
other hand, after 950 °C/1 h/AC+600 °C/4 h/AC solution aging treatment, the improvement of microstructure heterogeneity between different
regions reduces the difference in corrosion resistance between different regions of hybrid-manufactured TC4 titanium alloy components to a
certain extent, while the overall corrosion resistance of the sample is improved.
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