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Fig.1 Microstructure of forged TA16 titanium alloy

7Tk PR T v i A o 2 7 i 2 P s i o %
G N B P AR | IE AR T SR R A A ) o TR R AR R
BT 0131 s, J AR By B A AR T 1) 38 K T 3
K AEIR BN B 818 N e A& TP E, 230N T
BALRE A B A& IR, B BRI AR . X 35
FEAR AR R N TA16 5k & &8 T RE ) R, 2 384
AT R N RE S RS T . TITE R R HOR A R
(10 s™) VAR 77 1 FiT B 34 5 (R N AR i 2R AR B, (HAE 42
VG N ST 5 RS AL B, 1 B AR ik #1] 0.7~
1.0, [l 2% 12 168 P 38 KA e i S B0 I0 TR AL B 34 . X i A
o AR S FE R TA16 B St AR BURK, AR T B3 K 3 —
SEFRBE S5 4 DRUIN TR K AR TS 470 0 R A JE

4 EIARKIRE

AR IRM BIE 2 eIl & 2k N2 215 01
FH S 73 2 0 1 P 505 A R 36 ek 47 3R AR DU A BHLE o
AR A B 2 B REE AR AT R 53 T AT
BRI I AR T B R o L Z s A R
HEERE R . BT B AT G RS SR K I ME R
AR, RO TR N 51 3 EEAE A A Arrhenius
Johnson-Cook 2 Fli A A T
Arrhenius A< #2151 ff Svante Arrhenius T+ 18 tH 42 80
AR 2 AR A IR B AL A SRR A AR X — A R
&, B EM R BOE REXT AR AT D9 RE N , A d R FH
FARRER 22—, Johnson-Cook 4% #4151 1 i Johnson
A Cook 7£ 20 142 80 FEALHR HY!™, 1Z AR AL [R] I 25 18 17 N
ARRGEAY, A% 2R iR A R FE A RSE R ), & — P =X
AT B P RS 3 CEAN BRI A L BRS AR
WARH N
H TR BR8N A 1 B0 A A B B B X AR 4
PRME T (R ME GAK AR, HAM AR 0 A S 41 RHR AR
AT VG BE e S A7 AE M 22 , DR 45 G AR AL AR
PR & J il i g 7 N T 48 W 4% Cartificial neural

350 350
a 350 c
| 300 oec | 300t sl
S 250¢ woec | 250t sl
@
2 200t 200 +
g M 200 +
2 150+ 150 + 150
g /S
= 100 | 100 - 100 }
50+ 50+ 50 F
—— 930 °C
. 103Q°C, 980 °C

0 1
0.0 02 04 06 08 1.0 1.2 14

True Strain

0 1 1 L
00 02 04 06 08 1.0 12 14

True Strain

0 1 1 1 1 1 1
00 02 04 06 0.8 1.0 12 14

True Strain

P12 AN [ A TR il 0 7 A S R4S TAL6 B & LI - LR A 2%
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Table 1 Regression equation of coefficients InA, a, r, and Q with true strain and correlation coefficient R
Range Coefticient Regression equation R
In4 32.56+203.276-1531.02™+4132.216’-5267.206*+3157.13™-718.08¢° 0.998
Above a 0.03-0.07¢+0.28¢™0.506™+0.42¢*-0.13¢° 0.992
T, n 4.2949.15¢-81.406™+238.25¢"-331.59¢221.58¢™-57.01¢° 0.998
0 414.58+800.546-7407.68&7+17746.54¢°-17451.526*+5992.76¢° 0.997
In4 87.54+305.32¢-3728.58+1.35x10% £~ 1.71x10* £*+7147.95¢° 0.937
Below a 0.006-0.012¢+0.027£-0.023°+0.007¢* 0.998
T, n 24.26-40.056-117.846+981.49¢-1458.736*+632.21¢° 0.800
0 856.20+2301.816-3.24x10%™+1.22x10°’-1.571.22x10°*+6.611.22x10%’ 0.937
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Table 2 Johnson-Cook constitutive model parameters

Range A B n C m
Above Tﬁ 14.662 6.9398 —0.25088 0.46813  0.2864
Below Tﬁ 3.897 301.9435 0.1733 0.02103  0.8623
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High-Accuracy Constitutive Model of TA16 Titanium Alloy Based on
Artificial Neural Networks

Zhang Siyuan, Li Silan, Li Qian, Mao Chengliang, Wang Jialu, Xin Shewei
(Northwest Institute for Nonferrous Metal Research, Xi’an 710016, China)

Abstract: The thermal simulation compression experiments were conducted on forged TA16 titanium alloy using the Gleeble-3800 system at the
temperature of 730—1030 °C and strain rates from 0.1 s to 10 s™'. The true stress-true strain curves of TA16 alloy under these deformation
conditions were obtained. Constitutive models for the TA16 alloy were established using three different methods: the Arrhenius model, the
Johnson-Cook model, and artificial neural networks (ANN). The model errors were analyzed. The results indicate that the TA16 alloy reaches a
dynamic balance between work hardening and softening after yielding at medium and low strain rates. At high strain rates, it initially softens and
then enters a balance state, demonstrating good workability. The mean absolute percentage error (MAPE) of the constitutive models for the TA16
alloy using the Arrhenius model, the Johnson-Cook model, and ANN is 11.49%, 23.7%, and 1.69%, respectively. The ANN model shows an order
of magnitude higher accuracy compared to the traditional constitutive models. The Arrhenius model exhibits better accuracy at medium and high
strain rates and in the medium and low strain range, making it practical for engineering applications. The Johnson-Cook model reflects the trend of
high-strain hardening and struggles to describe the dynamic equilibrium state after yielding for the TA16 alloy, resulting in poor model accuracy
and making it unsuitable for engineering applications. The ANN model demonstrates extremely high predictive accuracy across the entire range of
experimental parameters, and it also maintains good accuracy for data predictions beyond the experimental parameter ranges, providing a highly
accurate constitutive model for engineering applications.
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