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基于人工神经网络的高精度TA16钛合金本构模型

张思远，李思兰，李 倩，毛成亮，王佳璐，辛社伟
（西北有色金属研究院，陕西  西安  710016）

摘 要：使用Gleeble-3800对锻态TA16钛合金在温度730~1030 ℃、应变速率0.1~10 s-1的条件下进行热模拟压缩实验，取得

TA16合金在该变形条件范围内的真应力-真应变曲线。分别使用Arrhenius、Johnson-Cook本构模型和人工神经网络（ANN）

3种方式建立了TA16钛合金的本构模型，并对模型误差进行了分析。结果表明：TA16钛合金在中、低应变速率下屈服后加

工硬化与软化达到动态平衡状态，在高应变速率下呈现先软化后再进入平衡状态，合金加工性能良好；Arrhenius、Johnson-

Cook和ANN建立的TA16钛合金本构模型平均绝对百分比误差（MAPE）分别为11.49%、23.7%和1.69%，ANN模型较传统

本构模型精度高 1个数量级；Arrhenius本构模型在中、高应变速率和中、低应变范围内精度较好，在工程中具有实用性；

Johnson-Cook本构模型体现了高应变硬化的趋势，难以描述TA16钛合金屈服后动态平衡状态，模型精度较差，不宜在工程

中使用；ANN本构模型在全部实验参数范围内具有极高的预测精度，同时在实验参数以外预测数据同样具有良好的精度，

能够为工程实践提供高精度的本构模型。
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1　引 言

TA16钛合金是我国仿制前苏联ПТ-7М的一种α型

钛合金[1]，其名义成分为Ti-2Al-2.5Zr，该合金因具有低强

度、高塑性、低合金、高耐蚀、加工和可焊性良好的综合性

能特点，被广泛应用于核电等服役环境要求苛刻的管路

系统中，在航天、舰船等领域也有重要应用。随着清洁能

源与核动力需求的快速发展，该合金的各类管材、箔材、

带材、薄壁焊接件等需求快速增长。为进一步设计优化

TA16钛合金热加工工艺制度，提高工艺效率及热成型控

制技术，需要对TA16钛合金的热变形本构模型开展研究

工作。

钛合金的热变形过程对工艺参数非常敏感，由于缺

少钛合金专有的唯象数学模型，使用基于钢铁等其他金

属材料建立的本构模型在钛合金上使用精度十分有限。

国内外学者普遍采用Arrhenius和 Johnson-Cook本构模

型来描述钛合金材料的本构关系，其中Arrhenius本构模

型在各类钛合金材料上得到了广泛应用：杨晓康[2]、骆俊

廷[3]、李萍[4]、朱琳[5]、雷锦文[6]、刘杨[7]等使用该模型计算

了耐热钛合金TC17、TA15、Ti65、TC6、Ti6242s、TA32的

本构模型，预测流变应力与实验值的平均绝对百分比误

差（MAPE）分别为 7.32%、10% 和 6.9%、9.93%、14.40%、

15.15%；权思佳[8]等使用该模型计算了船用钛合金Ti-80

的本构模型，其 MAPE 为 7.44%；周盛武[9]、潘浩[10]、 

Ma[11]、Souza[12]等使用该模型计算了高强和高强韧钛合

金TB17、Ti-55531、TB8、TB6的本构模型，前三者MAPE

分别为6.5%、8.99%、8.08%，TB6计算了模型的相关系数

为 0.9654。而对于 Johnson-Cook本构模型，刘晓燕[13]等

对细晶纯钛建立了本构模型，其MAPE仅有 21.82%，通

过针对应优化达到了 9.42%；郝芳[14]等使用该模型对新

型抗冲击钛合金进行了研究，使用该模型对合金抵抗弹

丸侵彻过程进行了有限元分析，与实际靶试结果对比误

差小于 3.74%。Zhang[15]及Liu等[16]同时使用 2种模型研

究 了 Ti-10V-5Al-2.5Fe-0.1B、合金的本构关系 ，其中

Arrhenius的 MPAE 分别为 14.4%、18.88%，Johnson-Cook

的MAPE分别为22.53%、11.65%。以上的学者的研究表

明Arrhenius本构模型对于各种类型的钛合金材料都有

着适中的精度，钛合金组织性能及力学相应机制的复杂

性为模型的适配带来挑战。Johnson-Cook本构模型倾向

于类似钢铁等简单的加工硬化，对分析钛合金材料冲击

等高动态速率状态下有更大优势，而对常规塑性加工之

下的适用性有待研究。

本研究通过人工神经网络与传统数学模型两种方法

分别建立TA16钛合金的本构模型，并对模型误差进行分
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析，为TA16钛合金热变形工艺的设计和仿真提供理论

依据。

2　实 验

实验材料为西北有色金属研究院自行制备的           

Φ200 mm TA16钛合金锻坯，锻态金相组织为等轴组织，

如图 1所示。初生 α含量为 95%，β相转变点为 920 ℃。

在Φ200 mm的R/2处切取TA16钛合金试样若干，加工到

Φ10 mm×15 mm并车光倒角。

使用Gleeble-3800热模拟实验机进行热压缩模拟实

验。实验选取的变形温度为 730、780、830、880、930、

980、1030 ℃；应变速率为 0.1、1、10 s-1，变形温度和应变

速率组合试验参数共计 21 组。试样的高度变形量为

75%，换算真应变约为 1.3。试样通过电阻加热，两端垫

石墨片提高接触并减少摩擦力，升温速度为 10 ℃/s，保

温 3 min，依据参数进行单轴等温压缩实验，压缩结束后

水冷以保留变形组织。

3　真应力-真应变曲线

图 2为TA16钛合金分别在应变速率为 0.1、1、10 s-1

下不同变形温度的真应力-真应变曲线。由图可见，

TA16合金在不同参数下变形时流变应力和峰值应力随

变形温度的升高而降低，随应变速率的升高而升高，该合

金为负温度敏感、正应变速率敏感型材料。在低应变速

率的条件下（0.1、1 s-1），流变应力随着变形的增大而增

大，在达到峰值应力缓慢下降后基本趋于平直，呈现加工

软化和硬化动态平衡的现象，直到变形的末期。这说明

在低应变速率条件下TA16钛合金变形能力良好，在整个

变形量范围内都能够保持稳定。而在高应变速率条件下

（10 s-1）流变应力的前段趋势与低应变速率相似，但在经

过峰值应力后呈现缓慢软化现象，当真应变达到 0.7~

1.0，随变形温度增大时转而呈现加工硬化趋势。这说明

高应变速率下TA16钛合金对应变敏感，变形量增大到一

定程度后会因加工硬化增大变形抗力和难度。

4　建立本构模型

本构模型描述材料在多能场耦合条件下受到外力作

用时力学响应的数学模型，通过描述和预测材料在热加

工过程中的力学响应，能够为材料变形行为分析、成型仿

真模拟计算、加工变形窗口设计及加工工艺设计优化提

供数据基础。由于目前尚无针对钛合金材料开发的唯象

本构模型，科研和工程人员主要在使用 Arrhenius 和

Johnson-Cook 2种本构模型。

Arrhenius本构模型由Svante Arrhenius于 18世纪 80

年代提出，该模型通过源自化学反应活化能这一抽象概

念，考虑材料中激活能对变形行为的影响，是最常用的唯

象本构模型之一[17]。Johnson-Cook本构模型由 Johnson

和Cook在 20世纪 80年代提出[18]，该模型同时考虑了应

变硬化、应变率强化和温度软化效应的影响，是一种形式

简单的唯象模型，通常在钢铁领域广泛使用，钛合金材料

也偶有应用。

但由于没有能够应用的理论本构模型或针对钛合金

材料设计的唯象本构模型，其他模型对钛合金材料的变

形行为匹配度难免存在偏差，因此结合现代计算机技术

的快速发展，通过建立人工神经网络（artificial neural 

100 μm

图1  TA16钛合金锻态显微组织

Fig.1  Microstructure of forged TA16 titanium alloy

图2  不同变形温度和应变速率的锻态TA16钛合金真应力-真应变曲线

Fig.2  True stress-true strain curves of forged TA16 titanium alloy at different deformation temperatures with the strain rate of 0.1 s–1 (a), 1 s–1 (b), 

and 10 s–1 (c)
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Network，ANN）来对多元素、非线性的复杂系统进行预

测[19]。因此，在针对工程实践方面通过ANN建立的本构

模型能够更加符合不同材料、成分、状态的本构关系。

本研究将采用 Arrhenius 和 Johnson-Cook 传统唯象

本构模型和ANN分别对TA16钛合金建立本构模型，分

析模型误差并对比不同模型之间的特点。

4.1　Arrhenius本构模型的建立

Arrhenius 本构模型包含指数方程式（1）、幂方程    

式（2）和双曲正弦方程式（3）3种形式。

ε̇exp (Q/RT ) = A1σ
n1 （1）

ε̇exp (Q/RT ) = A2exp ( βσ ) （2）

ε̇exp (Q/RT ) = A3[sinh (ασ ) ] n
（3）

式中，A1、A2、A3、n1、n、β为与温度无关的系数；ε̇为应变速

率；σ为流变应力；R为气态常数8.314；Q为变形激活能。

式（3）通过参数参数Q、A3、n、α描述了指定变形温度、应

变速率与流变应力之间的关系。因此先逐个求出不同真

应变下参数 lnA、α、n、Q的值，随后通过多元线性回归其

值与真应变的函数即可求得对应的本构模型。对式（1）

~式（3）两侧分别取自然对数，可得：

ln ε̇ = ln A1 + n1lnσ - Q/RT （4）

lnε̇ = lnA2 + βσ - Q/RT （5）

lnε̇ = lnA3 + nln [sinh (ασ ) ] - Q/RT （6）

由式（4）、（5）可知，lnε̇ - lnσ和 lnε̇ - σ为线性关系，对

其进行线性拟合所得斜率分别为参数 n1和 β，再通过关

系式 α = β/n1 可以求出参数 α的值。根据 α可以求出

ln [sinh (ασ ) ]，由式（6）可知 lnε̇ - ln [sinh (ασ ) ] 和 1/T -

ln [sinh (ασ ) ]同为线性关系，将其线性拟合后所得斜率

分别为参数 n 和 Q/Rn。且由式（6）可得 ( lnε̇ + Q/RT ) -

nln [sinh (ασ ) ]线性关系的截距为参数 lnA。至此已将 4

个参数分别求出，代入式（3）即可得到该真应变下的本构

关系方程。再将各个真应变下的参数逐个求出并分别拟

合，即可获得材料的本构模型。

由于钛合金材料在β相转变温度上下变形行为有明

显差异，因此本研究分别对TA16钛合金相变点上、下温

度范围分别计算本构模型。以真应变0.1为间隔分别计

算相变点上、下真应变 0~1.2范围内的方程参数 lnA、α、

n、Q并对其进行回归，如图3、图4所示，建立本构模型见

表 1。由此可以获得 TA16 钛合金在变形温度 730~

1030 ℃；应变速率 0.01~10 s-1；真应变 0~1.2范围内的本

构模型。将该范围内任意真应变对应的4个参数值代入

式（3）即可得到该真应变下的本构模型。

4.2　Johnson-Cook本构模型的建立

Johnson-Cook本构模型的一般形式如式（7）所示：

σ = (A + Bεn ) (1 + Clnε̇/ε̇0 )
é

ë

ê
êê
ê
ê
ê
1 - ( T - Tr

Tm - Tr )mù

û

ú
úú
ú
ú
ú

（7）

式中，σ为流变应力；A为参考温度及应变速率下的初始

屈服应力；B为应变硬化因子；n为加工硬化指数；C为应

变速率硬化因子；ε̇0 为参考应变速率；Tm为熔化温度；Tr

为参考温度；m为热软化因子。

Johnson-Cook本构模型的求解步骤为：首先选取与

a b

c

图3  相变点以上系数 lnA、α、n、Q与真应变的关系

Fig.3  Relationships of lnA (a), α (b), n (c), and Q (d) with true strain above Tβ
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参考应变速率 ε̇0和参考温度Tr相同的应变速率 ε̇和变形

温度T，即可将式（7）简化为式（8）。其次选取与参考温

度 Tr相同的变形温度 T，即可将式（7）简化为式（9）。最

后选取与参考应变速率 ε̇0 相同的应变速率 ε̇，即可将式

（7）简化为式（10）。

σ = A + Bεn （8）

σ = ( A + Bεn ) (1 + Clnε̇/ε̇0 ) （9）

σ = ( A + Bεn )
é

ë

ê
êê
ê
ê
ê
1 - ( T - Tr

Tm - Tr )mù

û

ú
úú
ú
ú
ú

（10）

对式（8）两边同时取对数后得到式（11），对变量 lnε

和 ln(σ -A)进行线性拟合即可求得加工硬化指数 n和应

变硬化因子B。对式（9）简单变换后得到式（12），对变量

lnε̇/ε̇0和
σ

A + Bεn
进行线性拟合后即可求得应变速率硬化

因子 C。对式（10）简单变换并两端求对数后得到式

（13），对变量 ln
T - Tr

Tm - Tr

和 ln (1 -
σ

A + Bεn )进行线性拟合

后即可求得热软化因子m。将以上取得的变量带入式

（7）即可得到该材料的 Johnson-Cook本构模型。

ln (σ - A) = lnB + nlnε （11）

σ
A + Bεn

= 1 + Clnε̇/ε̇0 （12）

ln (1 -
σ

A + Bεn ) = mln
T - Tr

Tm - Tr

（13）

本研究同样在 β相转变点上下分别建立 Johnson-

Cook本构模型，在相变点以下定义应变速率和变形温度

的参考值为 ε̇0=0.1 s-1 和 Tr=730 ℃，该条件下真应变

0.00177时的初始应力A=3.879 MPa，在相变点以上定义

图4  相变点以下系数 lnA、α、n、Q与真应变的关系

Fig.4  Relationships of lnA (a), α (b), n (c), and Q (d) with true strain below Tβ

表1  系数 lnA、、α、、n、、Q与真应变的表达式和相关系数R2

Table 1  Regression equation of coefficients lnA, α, n, and Q with true strain and correlation coefficient R2

Range

Above

Tβ

Below

Tβ

Coefficient

lnA

α

n

Q

lnA

α

n

Q

Regression equation

32.56+203.27ε-1531.02ε2+4132.21ε3-5267.20ε4+3157.13ε5-718.08ε6

0.03-0.07ε+0.28ε2-0.50ε3+0.42ε4-0.13ε5

4.29+9.15ε-81.40ε2+238.25ε3-331.59ε4+221.58ε5-57.01ε6

414.58+800.54ε-7407.68ε2+17746.54ε3-17451.52ε4+5992.76ε5

87.54+305.32ε-3728.58ε2+1.35×104 ε3-1.71×104 ε4+7147.95ε5

0.006-0.012ε+0.027ε2-0.023ε3+0.007ε4

24.26-40.05ε-117.84ε2+981.49ε3-1458.73ε4+632.21ε5

856.20+2301.81ε-3.24×104ε2+1.22×105ε3-1.571.22×105ε4+6.611.22×104ε5

R2

0.998

0.992

0.998

0.997

0.937

0.998

0.800

0.937
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应变速率和变形温度的参考值为 ε̇0 = 0.1 s-1和Tr=930 ℃，

该条件下真应变 0.00088时的初始应力A=14.662 MPa，

TA16钛合金熔点经测定为Tm=1675 ℃。根据上述求解

步骤逐步求解本构模型参数，得到相变点上、下 Johnson-

Cook本构模型参数见表2。

4.3　人工神经网络本构模型的建立

人工神经网络在训练和调整的过程中有多种算法，

本研究将使用最常用的反向传播（back propagation，BP）

算法模型，该模型自20世纪70年代提出以来不断发展，

是迄今为止使用最多的学习算法[20]，在实际应用中有

80%~90%的人工神经网络使用的是BP算法或其改进形

式。BP算法的神经网络的结构包括输入、隐含层、输出

层和输出4个部分。

结合本构模型的特点设置3个输入节点分别为变形

温度、应变速率和真应变，设置1个输出节点为预测的流

变应力。隐含层中的隐藏神经元数量没有特定选择方

式，通常根据经验公式进行确定，本研究使用实验数据对

隐藏神经元数 5~50 范围内的网络分别进行了 10 次训

练，统计每次网络训练到满足收敛条件或迭代次数达到

预设上限（1000次）时统计迭代次数和训练性能，统计分

析图 5所示，其中颜色填充区域是该隐藏神经元数网络

训练时迭代次数和训练性能偏差的范围。可以看到随着

隐藏神经元数的增加网络中的隐含层变得更加复杂，导

致网络收敛到预设精度水平所需的迭代次数不断增加，

更复杂的网络内容能够更加贴近数据的分布模式，使得

训练性能（越小越好）不断提高，但随着隐藏神经元数的

增大边际效益也在迅速减小，因此本研究将隐藏神经元

数设置为20个。

将热模拟压缩试验取得的不同变形温度、不同应变

速率的 21条曲线的数据收集，合计 27 560组，其中变形

温度、应变速率和真应变作为输入数据，流变应力作为目

标数据。随机抽取其中 70%的数据用于训练网络，15%

的数据用于验证网络，15%的数据用于测试网络，3组功

能的数据相互独立。BP神经网络的学习采用LM算法，

误差性能函数使用均方误差 MSE。如图 6 所示，经过

878次迭代六次连续验证迭代的验证误差大于或等于先

前最小验证误差后停止训练，可以看到 3组数据的均方

误差均达个位数数量级。从全部数据的误差直方图可以

看出约75%的数据误差逼近零误差线，各组数据与训练

后网络的相关度如图 7所示，用于训练、验证、测试和全

部数据的相关系数均＞0.999，由此可见训练的BP神经

网络本构模型精度极高。

5　结果与讨论

5.1　3种本构模型的误差分析

图 8为Arrhenius本构模型预测值与实验值对比，观

察可见相变点以上预测值与试验值吻合性较好，而相变

点以下仅有中低应变区域吻合较好，当真应变增大到0.5以

上时预测值根据变形温度不同呈现出了加工硬化或软化

的趋势，而实际的试验值呈现出TA16钛合金在大变形条

图5  不同隐藏神经元数训练的情况

Fig.5  Training conditions with different numbers of hidden neurons

表2  Johnson-Cook本构模型参数

Table 2  Johnson-Cook constitutive model parameters

Range

Above Tβ

Below Tβ

A

14.662

3.897

B

6.9398

301.9435

n

–0.25088

0.1733

C

0.46813

0.02103

m
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图6  人工神经网络训练性能曲线和误差直方图

Fig.6  Performance curve (a) and error histogram (b) of ANN training
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件下仍旧可以保持动态平衡，这一点从实验样品加载后

的宏观形貌上也可以体现。图 9a~9c 分别是应变速率

0.1、1、10 s-1条件下不同温度和真应变对应的预测值与实

验值绝对百分比误差（APE）分布情况，相对直接对比预

测值和实验值等高线图能够更直观地反应该本构模型的

精度水平。其中APE极大值为 730 ℃/10 s-1/1.1（变形温

度/应变速率/真应变）的80.17%，极小值为930 ℃/1 s-1/0.3

的0.21%。在不同应变速率条件下模型偏差的整体规律

是一致的，即低温大变形区域偏差最大，而低变形区域整

体偏差较小，同时可以看到该模型在低应变速率条件下

精度较差。图 9d~9f 是对全部绝对误差数据在不同应

变、温度和应变速率下分别统计平均绝对百分比误差

（MAPE）的趋势变化图，可以看到对于模型整体而言低

应变条件下模型的精度比较可靠，在真应变达到0.9之后

快速上升，而变形温度在 780 ℃及以上时模型的MAPE

也保持在15%以下，而对比不同应变速率条件可以看到

在1、10 s-1条件下模型的精度较高。常规TA16钛合金加

工过程应变速率分布在1~10 s-1范围内，变形温度最低基

本在800 ℃以上，工程应变通常也不会超过60%（真应变

0.9），因此该本构模型在工程中仍有较大的应用价值和

指导意义。

图 10为 Johnson-Cook本构模型预测值与实验值对

比，可以看到预测值的曲线呈现出金属材料常见的屈服-

硬化过程，与TA16钛合金实验条件下取得的应力变化趋
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图7  ANN训练网络各组数据误差

Fig.7  Data errors of each group of ANN training: (a) train data, (b) validation data, (c) test data, and (d) all data

图8  Arrhenius本构模型预测的流变应力与实验值对比

Fig.8  Comparisons between flow stress predicted by Arrhenius constitutive model and experimental value with the strain rates of 0.1 s–1 (a),          

1 s–1 (b), and 10 s–1 (c)
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势区别较大，尤其是随着变形量的增大保持持续硬化的

趋势更符合传统钢铁的屈服响应过程，对钛合金材料在

变形过程中加工硬化和动态再结晶的动态平衡过程难以

进行描述。图11a~11c是在应变速率0.1、1、10 s-1条件下

不同温度和真应变对应的预测值与实验值APE分布情

况，其中APE的极大值是880 ℃/10 s-1/1.1的105.85%，而

极小值是980 ℃/0.1 s-1/1.1的0.1%，结合误差分布等高线

图（图11a~11c）能够直观地反映出温度高、变形量大的区

域模型精度相对较差。图11d~11f更加能够直观地反应

这一现象，可以看到随着应变的增加，MAPE从 26.31%

下降到最小值18.26%后增大到30.53%（图11d）。而随温

度升高的变化趋势是相变点上、下分别预测模型的各自

最高温度 880和 1030 ℃的误差最大，MAPE最大值达到

50%以上，越接近模型参考温度Tr误差相对越低，说明该

模型严重依赖参考温度，偏离幅度会显著增加误差。而

不同应变速率之间的误差变化并不大，基本都在24%左

右。以上的情况可以反映出 Johnson-Cook本构模型不适

合钛合金大变形时的本构关系描述，同时在低应变条件

下模型精度也十分有限，因此在工程上应用较为困难。

图 12为通过人工神经网络预测的流变应力值与实

验结果的对比，可以看到预测值大小和变化趋势与实验

值完全一致，不论在各个温度、应变和应变速率条件下都
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图9  不同范围Arrhenius本构模型预测的流变应力误差分析

Fig.9  Strain-temperature plots of flow stress predicted by Arrhenius constitutive model in different ranges with the strain rates of            

0.1 s–1 (a), 1 s–1 (b), and 10 s–1 (c); relationship strain (d), temperature (e), and strain rate (f) with MAPE

图10  Johnson-Cook本构模型预测的流变应力与实验值对比

Fig.10  Comparison of flow stress predicted by Johnson-Cook constitutive model and experimental value with the strain rates of 0.1 s–1 (a),           

1 s–1 (b), and 10 s–1 (c)

•• 2839



第 54 卷 稀有金属材料与工程

呈现了良好的匹配精度，同时对于TA16合金在不同变性

条件下大变形量阶段反映出的硬化和软化现象也可以完

全匹配，这是由于ANN模型并不依赖物理意义而是作为

黑箱完全贴合原始数据这一优势，对于没有研究经验的

新材料也能最大程度的符合实验数据。图13a~13c是在

应变速率0.1、1、10 s-1条件下不同温度和真应变对应的预

测值与实验值 APE 分布情况，APE 极大值为 1030 ℃/     

1 s-1/0.1的 11.31%，极小值为 830 ℃/0.1 s-1/0.2的 0.03%。

ANN本构模型的APE值上下浮动范围很小，模型整体精

度很高，局部细节观察可以看到高温大变形量区域的误

差相对较大，结合流变应力曲线可以看到这是由于大变

形量区域TA16钛合金在不同条件下分别呈现硬化和软

化的现象，使得模型隐藏神经元匹配更多模式时误差增

大，因此对于变化复杂的数据宜适当增加隐藏神经元数

量。图 13d~13f是在不同应变、温度和应变速率下分别

统计MAPE的趋势变化图，可以看到模型的平均误差水

平在各变形参数均值侧较低，基本都保持在3%以下，因

此如果采用该模型对工程实践进行指导能够反映出更加

精确的数值结果。

对比Arrhenius本构模型和ANN模型预测流变应力

与实验数据的偏差如图 14所示，Arrhenius本构模型的

MAPE 为 11.49%，Johnson-Cook 本构模型的 MAPE 为
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图11  不同范围 Johnson-Cook本构模型预测的流变应力误差分析

Fig.11  Strain-temperature plots of flow stress predicted by Johnson-Cook constitutive model in different ranges with the strain rates of 

0.1 s–1 (a), 1 s–1 (b), and 10 s–1 (c); relationship strain (d), temperature (e), and strain rate (f) with MAPE

图12  ANN本构模型预测的流变应力与实验值对比

Fig.12  Comparisons of flow stress predicted by ANN constitutive model and experimental value with the strain rates of 0.1 s–1 (a), 1 s–1 (b), 10 s–1 (c)
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23.70%，ANN模型的MAPE为 1.69%。图中横纵坐标分

别为相同变形参数下实验数据与模型预测数据，因此散

点越贴近红色对角线说明两者之间的偏差越小。

Arrhenius本构模型在低应力区域的误差很小，随着应力

增大模型预测的应力值相对偏大。Johnson-Cook本构模

型在低应力区域的误差相对自身偏低，而高应力区域预

测值显著高于实验值，离散很大。ANN模型在全部数值

区域的精度都非常高，预测值与实验值偏差极低，反映出

该模型对原始数据的拟合性能。

5.2　人工神经网络模型泛化能力分析

工程实践中常会需要在实验参数的范围之外预测材

料的应力状态，因此模型原始参数范围之外的数据预测

准确能力显得尤为重要。本研究使用 780~1030 ℃变形

温度范围的真应力-真应变曲线训练ANN本构模型，使

用该模型预测变形温度为 730 ℃的流变应力值，将该值

与实验值进行比较，以分析无730 ℃相关数据时ANN模

型的泛化能力，结果如图 15a所示。可以看到对于模型

以外的变形温度 730 ℃，在应变速率 0.1、1、10 s-1条件下

ANN模型预测的数据与实验数据趋势一致，误差较小。

将ANN模型预测的数据与Arrhenius和 Johnson-Cook本

构模型在730 ℃计算的数据对比可以看到，ANN模型预

测的MAPE为 4.70%，比前文包含 730 ℃实验数据训练
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图13  不同范围ANN本构模型预测的流变应力误差分析

Fig.13  Strain-temperature plots of flow stress predicted by ANN constitutive model in different ranges with the strain rates of 0.1 s–1 (a), 1 s–1 (b), 

10 s–1 (c); relationship of strain (d), temperature (e), and strain rate (f) with MAPE

图14  人工神经网络和传统本构模型预测的流变应力误差

Fig.14  Flow stress error predicted by Arrhenius constitutive model (a), Johnson-Cook constitutive model (b), and ANN model (c)
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后 的 ANN 模 型 MAPE 略 高 。 而 对 比 Arrhenius 和

Johnson-Cook本构模型在730 ℃相关数据的MAPE值具

有明显精度优势（图15b），这说明在工程实践中ANN模

型能够更加准确的预测实验数据范围以外的流变应力，

为实际工程需求提供更好的支持。

6　结 论

1）TA16钛合金在中、低应变速率条件下屈服后迅速

进入加工硬化与软化的动态平衡状态，在高应变速率条

件下先呈现软化后再进入平衡状态，合金的加工性能

良好。

2）建立的 TA16 钛合金 Arrhenius 本构模型精度较

好，整体MAPE为 11.49%。在相变点以上模型精度高，

在相变点以下模型误差随着变形量的增加而增大，模型

在中、高应变速率下精度高于低应变速率条件。TA16钛

合金常规加工工艺范围在该模型精度相对较好的区域，

因此该模型在工程上具有较好的应用价值。

3）建立的TA16钛合金 Johnson-Cook本构模型精度

较差，整体MAPE为23.70%。模型在应变增大后的硬化

趋势与TA16钛合金不符，无法反应钛合金材料变形的动

态平衡行为。模型误差随着应变增大持续增大，但低应

变下误差也相对较大，因此该模型在工程上无法应用。

4）建立的TA16钛合金ANN本构模型精度极高，整

体MAPE为1.69%。该模型在全部实验变形参数范围内

预测数据与实验值误差小，工程应用时能精确反应材料

的力学响应状态。

5）ANN本构模型泛化能力良好，使用除730 ℃变形

温度以外的实验数据训练ANN模型并预测 730 ℃下的

流变应力值，与实验值对比MAPE为4.70%，在工程应用

中能够围模型范围外的数据提供较高精度的预测。

参考文献   References

[1] Huang Boyun(黄伯云), Li Chenggong(李成功), Shi Likai(石力

开) et al. Chinese Material Engineering Dictionary(中国材料工

程大典第4卷)[M]. Beijing: Chemical Industry Press, 2006: 530

[2] Yang Xiaokang(杨晓康), Wang Kuaishe(王快社), Shi Jiamin(史

佳敏) et al. Rare Metal Materials and Engineering(稀有金属材料

与工程)[J], 2018, 47(9): 2895

[3] Luo Junting(骆俊廷), Chen Yimin(陈艺敏), Yin Zongmei(尹宗

美) et al. Rare Metal Materials and Engineering(稀有金属材料与

工程)[J], 2017, 46(2): 399

[4] Li Ping(李  萍), Xu Haifeng(许海峰), Meng Miao(孟  淼) et al. 

Journal of Plasticity Engineering( 塑 形 工 程 学 报) [J], 2024,         

31(2): 120

[5] Zhu Lin( 朱  琳), Xu Yong( 徐  勇), Hu Shuangsheng( 胡双生)      

et al. Rare Metal Materials and Engineering(稀有金属材料与工

程)[J], 2023, 52(5): 1819

[6] Lei Jinwen(雷锦文), Xue Xiangyi(薛祥义), Zhang Siyuan(张思

远) et al. Rare Metal Materials and Engineering(稀有金属材料与

工程)[J], 2021, 50(6): 2025

[7] Liu Yang(刘  杨), Li Zhiqiang(李志强), Zhao Bing(赵  冰) et al. 

Rare Metal Materials and Engineering(稀有金属材料与工程)[J], 

2022, 51(10): 3752

[8] Quan Sijia(权思佳), Song Kexing(宋克兴), Zhang Yanmin(张彦

敏) et al. Rare Metal Materials and Engineering(稀有金属材料与

工程)[J], 2019, 48(11): 3600

[9] Zhou Shengwu(周盛武), Dong Hongbo(董洪波), Jiang Zhiyong

(姜智勇) et al. Journal of Plasticity Engineering(塑形工程学报)[J], 

2018, 25(1): 218

[10] Pan Hao(潘  浩), Zhang Yongqiang(张永强), Zhao Hengzhang

(赵恒章) et al. Hot Working Technology(热加工工艺)[J], 2018,    

47(21): 131

[11] Ma Lixia, Wan Min, Li Weidong et al. Journal of Alloys and 

Compounds[J], 2019, 808: 151759

[12] Souza P M, Sivaswamy G, Hall L et al. International Journal of 

Mechanical Sciences[J], 2022, 216: 106975

[13] Liu Xiaoyan(刘晓燕), Li Shuaikang(李帅康), Yang Xirong(杨西

荣). Rare Metal Materials and Engineering(稀有金属材料与工

程)[J], 2024, 53(2): 410

[14] Hao Fang(郝  芳), Zhao Pingluo(赵平洛), Mao Youchuan(毛友

图15  ANN本构模型730 ℃泛化预测数据

Fig.15  Generalized prediction data of ANN constitutive model at 730 ℃: (a) generalization data and experimental data; (b) comparison of other 

model calculation data

•• 2842



第 11 期 张思远等：基于人工神经网络的高精度TA16钛合金本构模型

川) et al. Rare Metal Materials and Engineering(稀有金属材料

与工程)[J], 2021, 50(12): 4348

[15] Zhang Shuai, Zhang Haoyu, Liu Xuejia et al. Journal of 

Materials Research and Technology[J], 2024, 29: 589

[16] Liu Xuejia, Zhang Haoyu, Zhang Shuai et al. Journal of Alloys 

and Compounds[J], 2023, 968: 172052

[17] Zener C, Hollomon J H. Journal of Applied Physics[J], 1944,     

15(1): 22

[18] Johnson G R. Proceedings of the 7th International Symposium 

on Ballistics[C]. Hague: American Defense Preparedness 

Association, 1983: 541

[19] Fine T L. Feed Forward Neural Network Methodology[M]. New 

York: Springer-Verlag, 1999: 129

[20] Rumelhart D E, HintonG E, Williams R J. Nature[J], 1986,      

323(9): 533

High-Accuracy Constitutive Model of TA16 Titanium Alloy Based on 
Artificial Neural Networks

Zhang Siyuan, Li Silan, Li Qian, Mao Chengliang, Wang Jialu, Xin Shewei

(Northwest Institute for Nonferrous Metal Research, Xi’an 710016, China)

Abstract: The thermal simulation compression experiments were conducted on forged TA16 titanium alloy using the Gleeble-3800 system at the 

temperature of 730–1030 ℃ and strain rates from 0.1 s–1 to 10 s–1. The true stress-true strain curves of TA16 alloy under these deformation 

conditions were obtained. Constitutive models for the TA16 alloy were established using three different methods: the Arrhenius model, the 

Johnson-Cook model, and artificial neural networks (ANN). The model errors were analyzed. The results indicate that the TA16 alloy reaches a 

dynamic balance between work hardening and softening after yielding at medium and low strain rates. At high strain rates, it initially softens and 

then enters a balance state, demonstrating good workability. The mean absolute percentage error (MAPE) of the constitutive models for the TA16 

alloy using the Arrhenius model, the Johnson-Cook model, and ANN is 11.49%, 23.7%, and 1.69%, respectively. The ANN model shows an order 

of magnitude higher accuracy compared to the traditional constitutive models. The Arrhenius model exhibits better accuracy at medium and high 

strain rates and in the medium and low strain range, making it practical for engineering applications. The Johnson-Cook model reflects the trend of 

high-strain hardening and struggles to describe the dynamic equilibrium state after yielding for the TA16 alloy, resulting in poor model accuracy 

and making it unsuitable for engineering applications. The ANN model demonstrates extremely high predictive accuracy across the entire range of 

experimental parameters, and it also maintains good accuracy for data predictions beyond the experimental parameter ranges, providing a highly 

accurate constitutive model for engineering applications.
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