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Effect of Surface Laser Shock on Fatigue Crack Propagation Rate of Bimodal Structure
Ti55531 Titanium Alloy

Shi Puying '?, Chen Lin’, Liu Xianghong?, Pang Zhicong', He Weifeng', Li Qingin’, Li Yinghong'
(1. Institute of Aeronautics Engine, School of Mechanical Engineering, Xi’an Jiaotong University, Xi’an 710049, China)
(2. Western Superconducting Technologies Co., Ltd, Xi’an 710018, China)

(3. School of Materials Science and Engineering, Xi’an Jiaotong University, Xi’an 710049, China)

Abstract: The fatigue crack propagation rate (da/dN) of bimodal structure Ti55531 titanium alloy before and after laser shock peening (LSP) was
investigated. The fracture, microstructure and residual stress of fatigue crack propagation samples were analyzed. The results show that after LSP,
the fatigue crack propagation rate decreases. When AK < 22.84 MPa: +/m , the LSPed sample (BM-LSP) has a lower fatigue crack propagation rate
than the unLSPed sample (BM). When AK=22.84 MPa~/m , the crack propagation rates of the two samples are similar, which are 3.92x10™
mm/cycle. After LSP, the thickness dispersion and length dispersion of the secondary a layer are decreased by 38.9% and 22.9%, and the polar
densities of a and f phases are decreased by 37% and 16%, respectively. The passivity of tip of the lamellar a and microstructure homogenization
alleviate the stress concentration, resulting in a decrease in da/dN. In addition, the LSP process introduces a residual compressive stress layer with
a depth of about 900 um on the surface of the material. Residual compressive stress is also an important factor to offset tensile stress at crack tip, to
enhance crack closure and to slow down crack propagation.

Key words: Ti55531 titanium alloy; surface laser shock peening; fatigue crack propagation rate (da/dN); microstructure
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