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Abstract: To address the issues of low accuracy, long time consumption, and high cost of the traditional temperature prediction
methods for laser directed energy deposition (LDED), a machine learning model combined with numerical simulation was proposed
to predict the temperature during LDED. A finite element (FE) thermal analysis model was established. The model’s accuracy was
verified through in-situ monitoring experiments, and a basic database for the predictive model was obtained based on FE simulations.
Temperature prediction was performed using a generalized regression neural network (GRNN). To reduce dependence on human
experience during GRNN parameter tuning and to enhance model prediction performance, an improved adaptive step-size fruit fly
optimization algorithm (ASSFOA) was introduced. Finally, the prediction performance of ASSFOA-GRNN model was compared
with that of back-propagation neural network model, GRNN model, and fruit fly optimization algorithm (FOA)-GRNN model. The
evaluation metrics included the root mean square error (RMSE), mean absolute error (MAE), coefficient of determination (R%),
training time, and prediction time. Results show that the ASSFOA-GRNN model exhibits optimal performance regarding RMSE,
MAE, and R* indexes. Although its prediction efficiency is slightly lower than that of the FOA-GRNN model, its prediction accuracy
is significantly better than that of the other models. This proposed method can be used for temperature prediction in LDED process
and also provide a reference for similar methods.
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1 Introduction causes rapid heating and cooling of materials. This

. - ] phenomenon generates an inhomogeneous temperature field,
Laser directed energy deposition (LDED) technique uses

high-energy laser beam to melt metal powder, and the powder
stream is coaxial with the laser beam. As the heat source

leading to significant residual stress, and potentially resulting
in deformation, cracking, or even scrap of the part™®.
Therefore,

accurately and efficiently predicting the

moves, the metal powder is rapidly melted and solidified, temperature during LDED process is crucial.

enabling deposition forming in point-by-point, line-by-line,

{51 LDED technique has several
advantages, including high deposition efficiency, unlimited
forming size, capability to prepare functional gradient

and layer-by-layer manner

materials, and the ability to repair and remanufacture critical
components. Thus, LDED is widely used in various fields,
such as aerospace, biomedicine, automotive, marine, and
nuclear power. However, LDED is a high-energy processing
technique, and the localized high-energy density heat input
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With the rapid development of computer technology,
numerical simulation has become a crucial tool to predict
temperature evolution in the additive manufacturing process.
Meng et al” developed a three-dimensional transient
thermoelastic-plastic model for LDED process, which allows
dynamic simulation of the temperature field with various
process parameters and scanning strategies, achieving a
simulation accuracy of approximately 82%. Dantin et al®
created a finite-element (FE) model to predict the thermal
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history of Ti-6Al-4V alloys and validated it through molten
pool data collected by a dual-wavelength pyrometer.
Pourabdollah et al® developed a three-dimensional transient
thermodynamic model based on the layer aggregation method
to rapidly predict the temperature in hollow rectangular parts
during deposition. The prediction results were in good
agreement with the measured data. Although these studies can
predict the temperature during the forming process, they are
only used in scientific research and are not suitable for
applications due to
computational cost, memory requirements, and the need for

industrial constraints related to
specialized expertise. With the rapid development of artificial
intelligence technology, machine learning, which is well-
known for its balance of computational cost and prediction
capability, is gradually applied to temperature prediction in
additive manufacturing processes. Zhou et al"” proposed a 3D
correction matrix based on a cubic mesh to describe the laser
deposition state and used it as input for recurrent neural
network (RNN)-deep neural network (DNN) model to predict
the temperature field in gas metal arc welding, achieving a
prediction accuracy of over 94%. However, because the size
of the 3D input matrix determines the number of cells in the
model, the actual size of additive manufacturing parts is
restricted. Ren et al"'! established a thermal analysis model
that combines RNN and DNN, achieving a prediction
accuracy of over 95%. However, the model only applies to
single-layer or single-track temperature field. Stathatos et al
proposed a custom-scanning path decomposition method and
used artificial neural networks to predict the temperature
evolution along arbitrarily long paths in laser additive
manufacturing. Similarly, the model can only be validated for
single-layer temperature fields. Zhu et al™ developed a
physically informed neural network model, which integrates
data and physical principles to predict the temperature field in
metallic additive manufacturing. This model achieves high
prediction accuracy despite a limited training dataset.
However, it does not account for the effects of free surface
deformation and evaporation phenomena in the molten pool.
Paul et al" developed a temperature prediction model based
on an extremely random tree. This model takes previous voxel
temperature and laser information as input and predicts the
temperature of subsequent voxels with a mean absolute
percentage error of less than 1%. However, as the feature set
of the prediction model depends on neighboring voxels within
a uniform mesh of rectangular elements, the geometric model
must be simplified to generalize irregular geometries and
meshes. Although machine learning methods offer new ways
to predict the temperature in LDED, they are less effective in
predicting temperature in short periods and require long
training time as well as sophisticated analytical capabilities.

In this research, a method that combines machine learning
with FE simulation was proposed to predict the temperature
during LDED process. FE thermal analysis model was
established and validated by in-situ temperature measurement
experiments. Additionally, a database of machine learning
models was created based on FE simulations. A generalized

regression neural network (GRNN) was used to predict
temperature with the optimal smoothing factor determined by
an improved adaptive step-size fruit fly optimization
algorithm (ASSFOA). Finally, the prediction performance of
ASSFOA-GRNN model was compared with that of other
machine learning models. The prediction model in this
research provides reference for future studies to explore the
effects of process parameters on the temperature field
distribution of deposited parts, eliminating the need for
complex FE analysis.

2 Experiment

The deposited material was Inconel 718 spherical powder
prepared by the gas atomization method, whose particle size is
15—53 pm, and its chemical composition is shown in Table 1.
Thin-walled parts with 20 mm in length and 6 mm in
thickness were deposited onto Inconel 718 sheets with dimen-
sions of 40 mmx40 mmx8 mm, and there were 20 layers in
total. Before the experiment, the metal powder was dried to
remove entrapped moisture and to improve its fluidity. The
substrate surface was sanded to remove the oxide film and to
enhance the absorption of the heat source. Finally, the sub-
strate surface was cleaned with ethanol and dried to remove
rust, oil, and dust. The temperature changes during the deposi-
tion process were drastic, and the thermo-physical property
parameters of the material changed nonlinearly with the
temperature. According to Ref.[15—17], the thermo-physical
property parameters of Inconel 718 are shown in Fig.1.

The forming experiments were conducted using the
Raycham LDM 4030 metal deposition system developed by
Nanjing Zhongke Yuchen Laser Technology Co., Ltd. The
laser has wavelength of 1070 nm and maximum output power
of 2 kW, and argon was used as the protective gas. An
aluminum oxide insulation board (80 mmx80 mmXx6 mm)
with excellent thermal insulation properties was placed
between the substrate and the worktable. Temperature data at
the test points on the substrate surface were recorded using
type-K thermocouples (diameter of 1 mm) and TA612C multi-
channel temperature data collector. The in-situ temperature
measurement system is shown in Fig. 2. The measurement
positions (T1 and T2) should be as close as possible to the
heat source while maintaining a sufficient distance to avoid
damage to the thermocouples.

3 Method

3.1 Thermal history dataset establishment

Numerous scholars have recognized that the main process
parameters significantly impacting the temperature during
deposition include laser power, scanning speed, and powder
feeding rate!"®?’
parameter, as shown in Table 2, and a total of 60 sets of

1. Multiple levels were considered for each

Table 1 Chemical composition of Inconel 718 (wt%)

Ni Ctr Nb Mo Mn Si Al Cu Ti C Fe
51.71 1893 5.12 3.08 0.13 0.14 0.49 0.05 0.97 0.04 Bal
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Fig.1 Thermo-physical property parameters of Inconel 718"*"": (a) specific heat, (b) thermal conductivity, and (c) density
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Fig.2 In-situ temperature measurement system

Table 2 Process parameters for thermal history dataset
establishment
Process parameter Value
Laser power, P/W 400, 500, 600, 700, 800
Scanning speed, v/mm-s™' 6,8,10,12
Powder feeding rate, f/g-s™' 0.2,0.3,04
Laser spot diameter, d/mm 1.2
z-incremental height/mm 0.3

numerical simulations were performed. The dataset was
divided with a ratio of 7:3, i.e., 42 sets of data for training and
18 sets for testing. The training and test datasets included the
thermal history of all mesh points on the deposited track and
the substrate.

This study used the thermodynamic coupling model
developed in Ref.[21] to perform FE simulations, generating
the thermal history dataset required for the machine learning
model. The governing equation for nonlinear transient heat
transfer in LDED process™ is as follows:

a( oT\ o oT\ o aT aT
B P e B
ax(kx ax ) ay(ky ay) az(kz 9z ) =Py 1

where k, k, and k. are the thermal conductivities in the x, y,
and z directions, respectively; ¢ is the heat flux density; p is
the material density; ¢ is the specific heat of material; T is
temperature.

FE analysis was conducted using a double ellipsoid heat
source model, where the laser energy was distributed in a
certain volume and applied to the nodes of the material model
as heat flux density, as shown in Fig.3.

The heat flux density of the model along the front and rear
semi-axes™ Y of the ellipsoid is expressed by Eq. (2 — 3),
respectively, as follows:

} 2

2 2 2
6ﬁfoeXp{3(x+y =

g x,y,z)= +
f( ) nafbc«/;

ai b ¢

Fig.3 Schematic diagram of double ellipsoid heat source model
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where f; and . are the heat flux distribution coefficients of the
front and rear ellipsoids, respectively, and f+f=2; a, and a, are
the lengths of the front and rear ellipsoids, respectively; b is
the width of the heat source; ¢ is the depth of the heat source;
Q is the effective thermal power. Q can be expressed by
Eq.(4), as follows:

Q="Py “4)
where P is the laser power and # is the material absorption

xZ y2 22
2wt e ®

rate of laser energy.

The initial temperature condition during deposition is as
follows:

T(x,y,z,t)|,:0:T0 Q)
where ¢ is time and 7 is initial temperature.

The initial temperature of the metal powder and substrate is
assumed to be 25 °C, according to the surrounding ambient air
temperature.

The heat exchange during deposition is dominated by ther-
mal convection and thermal radiation. The thermal boundary

condition conforms to the third type of boundary condition®:

aT
kg = h{T - Ty) + gr (T~ 1)) (6)

. ..o .
where k is the thermal conductivity, o 18 the temperature

gradient, £, is the convective heat transfer coefficient, 7 is the
surface temperature of the boundary of the object, 7, is the
temperature of the surrounding ambient medium, ¢ is the
emissivity (ranging from 0 to 1), and y is the Stefan-
Boltzmann coefficient (approximately 5.67x107° W-m™>-K™).

The birth-death element technique was employed to
simulate the deposition process of the part. In order to balance
computational efficiency and accuracy, a mesh convergence
study was conducted™ . A fine mesh with a minimum size of
1 mm was used in the deposition region and its neighboring
areas, and the mesh was gradually coarsened with the increase
in the distance from the deposition region. A total of 5238
cells and 7624 nodes were generated. The geometric meshing
and scanning strategy of FE model are shown in Fig.4. The
scanning strategy employed the reciprocating paths with
alternating scanning directions layer by layer.

Both the FE-based thermal simulations and the extraction

Fig.4 Schematic diagram of geometric meshing and scanning strategy

of the dataset were performed on a workstation equipped with
a 24-core processor (3.0 GHz) and 128 GB RAM. In machine
different different
dimensions, directly affecting prediction performance. To

learning, features  typically have
mitigate the impact of varying feature dimensions, data

normalization is necessary, as shown in Eq.(7), which maps

the data to the range between 0 and 17
Xi = Xiin
7 X~ X @

where x, is the normalized data, x; is the original data, x_,, is

the minimum value of the data, and x_,_is the maximum value
of the data.

3.2 Prediction model development
3.2.1 GRNN

GRNN is a highly parallel radial-basis neural network, and
it was proposed in 1991. It has strong nonlinear mapping
ability and fault tolerance, and it can better explain the
complex nonlinear relationships between the predicted object
and multiple influencing factors””. The model also performs
better when the network data are sparse and can obtain
optimized regression surfaces that converge with larger
sample sizes and clustering. GRNN consists of a four-layer
network, including an input layer, a pattern layer, a summation
layer, and an output layer, as shown in Fig.5.

The essential functions of each layer in the network are as
follows"" **!:

(1) Input layer

The number of neurons in the input layer is determined by
the dimensionality of the input data, and its role is to transmit
the input data directly to the pattern layer.

(2) Pattern layer

The number of neurons in the pattern layer is the same as
that in the input layer, and the transfer function is as follows:

T
P, =exp HESPINCSD (i=1,2,-+,n) (8)

20?

Input Pattern Summation Output

layer layer layer layer

Fig.5 Schematic diagram of GRNN structure
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where X represents the input parameter of the network, X,
denotes the learning sample corresponding to the ith neuron,
and ¢ is the smoothing factor.

(3) Summation layer

The summation layer consists of two types of neurons. One
type performs an arithmetic summation of the outputs from all
the pattern layers. The transfer function for this type is
denoted as follows:

Sp =" P, ©)

The other type of neuron performs a weighted summation
of the outputs from all the pattern layers. The transfer function
for this type is expressed as follows:

Sy= >0 yiPr (j=1,2,+,k) (10)
where y, represents the weight between the ith neuron in the
pattern layer and the jth neuron in the summation layer.

(4) Output layer

The number of neurons in the output layer equals the
dimension value & of the output vector in the learning sample.
Dividing the weighted summation output of the neurons in the
summation layer by the arithmetic summation output gives the
output of each neuron as follows:

S
y,=S—f)’ (j=1,2,-,k) (11)

GRNN determines its structure and connection weights
based on the learning samples, and only the smoothing factor
o is adjustable. The model’s predictive performance largely de-
pends on the value of this smoothing factor o". As o
approaches 0, the predicted value tends to be the mean of all
sample data, resulting in a significant prediction error.
Conversely, as ¢ approaches infinity, the predicted value
closely matches the training samples, which deteriorates the
model’s generalization ability and leads to overfitting, ultima-
tely reducing prediction accuracy. The traditional method for
determining the smoothing factor is often based on prior
experience or through linear iteration. However, this approach
is subjective, prone to randomness, and more likely to settle
into a local optimum, significantly restricting the model’s pre-
dictive capability™. To address this restriction, this study
employs an intelligent optimization algorithm to ascertain the
optimal smoothing factor for GRNN and to enhance its
prediction performance.

3.2.2 ASSFOA

Fruit fly optimization algorithm (FOA) is an emerging
swarm intelligence optimization method inspired by the
foraging behavior of fruit fly populations. Compared to other
swarm intelligence algorithms, FOA leverages fruit flies’ uni-
que olfactory and visual senses, offering advantages, such as
simple implementation process, fewer parameters, strong
searching capability, and rapid convergence. As a result, FOA
has been widely applied in scientific research and practical
engineering. Fig.6 illustrates the iterative evolutionary process
of fruit fly populations. Based on the characteristics of the
foraging behavior of fruit fly populations, FOA search process
is as follows™***,

(1) Initialization of parameters. The parameters include

.
+ S=1/Dist;
Smell=Fitnessfunction(sS;) Food
Fruit fly 2 &Y
(Xo,12) o
Fruit fly 1 ’;'& Smell, Iterative/’évolution
X,N) , ¥
7 \oemr=ea, e
o RIS o
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Fig.6 Iterative evolution procedure of FOA

population size (sizepop), maximum number of iterations

(maxgen), and randomly initializing the position of the fruit

fly population (X, ¥,.,)
(2) Olfactory search. When an individual fruit fly searches

for food using its sense of smell, it is randomly assigned a

direction and distance, and its position is updated, as follows:
{X X, + RandomValue

axis 12
Y, =Y,.. + RandomValue (12)

(3) Calculate the smell concentration judgment value. Since
the exact position of the food cannot be determined initially, it
is necessary to calculate the distance Dist, between the current
position of the fruit fly and the origin position. Then, compute
the smell concentration judgment value S, for each fruit fly.

Dist, = /X + Y/ (13)

S, = 1/Dist,

(4) Calculate the smell concentration value. Compute the
smell concentration value Smell, for each fruit fly by
substituting the fruit fly’s smell concentration judgment value
S, into the smell concentration judgment fitness function.

Smell, = Fitnessfunction(Si) (14)

(5) Find the optimal individual. Identify the individual fruit
fly with the best smell concentration value in the fruit fly
population, and record its concentration and location.

[ bestSmell, bestIndex | = min (Smell) (15)

(6) Visual localization. Record the fruit fly with the optimal
smell concentration value in the current fruit fly population
and its coordinates. If this smell concentration value is better,
the fruit fly population will move to the new location.

Smellbest = bestSmell
X,.. = X (bestIndex) (16)

axis

Y. = Y (bestIndex)

axis

(7) Iterative optimization search. Repeat steps (2)—(5) to
determine whether the optimal smell concentration value
exceeds that of the previous generation until the number of
iterations reaches the maximum value.

However, the standard FOA uses a fixed step size during its
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iteration process. Increasing the step size enhances global
search ability in the early stages and speeds up convergence.
However, in the later stages of iteration, as the fruit fly
population gets closer to the target, a larger step size can
reduce local search ability, lower convergence accuracy, and
may even cause the algorithm to oscillate around the
neighborhood of the optimal solution without reaching it. If
the step size is smaller, the local search ability of the fruit fly
is enhanced, and convergence accuracy is improved. However,
the convergence speed is slower in the early stages, which
hinders global search and may cause the algorithm to fall into
a local optimum. Therefore, this study used an adaptive step-
size to balance global and local search abilities. The mutation
and crossover operations from the differential evolution (DE)
algorithm were incorporated into FOA, resulting in an
improved algorithm: ASSFOA.

DE algorithm, proposed in 1995, is a stochastic heuristic
search algorithm that simulates the “survival of the fittest”
principle in natural biological populations. It has the
advantages of simple principle, fast convergence, few
controlled parameters, and strong robustness™. The basic
principle of DE algorithm is as follows. Start with a randomly
generated initial population of N, individuals in a D-
dimensional space. A mutation operation is firstly applied to
selected individuals to generate mutant individuals. Next, a
crossover operation is performed between the mutated
individuals and the corresponding target individuals to create
test individuals. Finally, based on the fitness of the test and
target individuals, the best individuals are selected to form the
next generation. Through continuous iterative optimization,
DE algorithm systematically eliminates poorly adapted
individuals while retaining the elite ones. This process ensures
that the population gradually converges towards the global
optimal solution. The three core steps of DE algorithm
(mutation, crossover, and selection) are detailed below™"*.

(1) Mutation operation

The mutation operation aims to transform each target
individual in the parent population into a mutant individual.
After evaluating several mutation strategies, the “DE/best/2”
strategy is selected:

VE=Xf+F x (X5 - X8)+ F x (X - X5) (17)

where V# is the mutation vector; X# is the target vector; X} is

the optimal individual obtained at the gth generation; F is a

scaling factor, which controls the effect of the difference

vector and takes values in the range [0, 1]; r,, r,, 75, 7,, and 7,

are randomly selected integers from the range [1, N,], distinct

from each other and the index i, i.e., 7, # r, # ry # r, # rs # L.
(2) Crossover operation

After generating the mutation vector V5 = (vﬁ 1o Vg, ee, VE D)
corresponding to the target vector X = (xf{l,xi?}, X ), the
test vector Uf = (u’f’ b USy, e, uﬁD) is generated through a

crossover operation. The common crossover operation in
differential evolution is the binomial crossover:

e vi, Ifrand < Cr orj =7 0 (18)
Y |x%  Otherwise

where rand is a uniformly distributed random number in the
interval [0, 1]; Cee[0, 1] is the crossover probability; j_ .
[1, D] is a randomly selected dimension index, ensuring that
at least one component of the test vector comes from the
mutation vector.

(3) Selection operation

After generating the test vector through mutation and
crossover operations, the fitness of the target vector and the
test vector is compared using a selection operation.
Consequently, the best individual is selected for the next
generation to ensure that each iteration of the population
evolution progresses toward the global optimum. The specific
selection operation is detailed below:
Us Iff(U8)<f(XF)
X§#  Otherwise

X:g+1 —

i

(19)

where f(X) is the fitness of the individual vector X.

In this study, the stochastic search step size of the standard
FOA was updated using mutation and crossover operations.
Meanwhile, the scaling factor was gradually decreased to
enhance the optimization search capability of algorithm. The
improvement strategy is as follows:

(1) Improved search step size

The search step size of the standard FOA is fixed. However,
with the incorporation of the mutation operation from DE
algorithm, the step size is dynamically updated based on the
differences among population individuals, thereby enhancing
the algorithm’s capability to search for optima.

U,;=X,, + Fx (X,,,,- - X,,,;) +Fx (Xw' - Xw’)

axis (20)

axis

where 7, 7,, ,, and r, are random numbers within the interval
[1, N,], and N, is the population size. To further increase the
diversity of the population, the search step size continues to
update using the crossover operation:

U, Ifrand<Cy or j=j .4
RandomValue, = . (21)
X, Otherwise
U, Ifrand<Cy orj=j_,
RandomValue ={ " " I (22)
7 wis Otherwise

(2) Improved scaling factor

In the early stages of iteration, when the population is far
from the optimal solution, a larger search step size can
enhance the algorithm’s global search capability, allowing
the fruit fly individuals to quickly reach the vicinity of
the optimal solution. Once in the neighborhood of the
optimal solution, the smaller search step size improves
the algorithm > s local search ability, enabling the optimal
to be rapidly. Based on the
abovementioned ideas, the scaling factor is improved to

solution found more
gradually decrease during the iteration process, thereby
enhancing the algorithm’s local search ability while ensuring
the diversity of the population. The formula for the scaling
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factor improvement is as follows:
F 0

Emax

where g is the current iteration number, g is the maximum
iteration number, and F| is the initial scaling factor.

3.2.3  Optimization of GRNN based on ASSFOA

The performance of GRNN is mainly affected by the

F F, -

g+1 Iy

(23)

smoothing factor ¢. In this study, ASSFOA was employed to
quickly optimize the smoothing factor of GRNN. The
ASSFOA-GRNN model was used to predict the temperature
during LDED process. The input variables include the
coordinates (x, y, z) of the mesh points, laser power P,
scanning speed v, and powder feeding rate f, while the
predicted temperature 7 at the mesh points serves as the
output variable. The prediction process of the ASSFOA-
GRNN model mainly consists of two steps. (1) Internal
parameter optimization: to ensure the validity and stability of
the prediction model, the root mean square error (RMSE)
between the predicted and actual values should be minimized,
and the optimal smoothing factor for the GRNN is determined
using ASSFOA. (2) External performance evaluation: the
prediction model is constructed based on the determined
optimal smoothing factor to predict the temperature during
LDED process. The algorithm flow of the ASSFOA-GRNN
model is illustrated in Fig.7.

Start

v

Normalized input variables

/\

Training dataset Testing dataset

1 n - 2
RMSE = ;zi:l(yi—yi) (24)
where 7 is the total number of data samples, y, is the actual
value corresponding to the ith moment, and y, is the predicted

value corresponding to the ith moment.
4 Results and Discussion

4.1 Validation of thermal analysis of FE model

Before using simulated data to train the ASSFOA-GRNN
model, the accuracy of FE model must be verified through
actual deposition experiments. Ref.[21] has already validated
the used FE model. To ensure the accuracy of the training data
for the predictive model, a preliminary validation was
conducted, though it is not analyzed in detail.

The temperature data from the test points on the surface of
the substrate were measured using type-K thermocouples and
compared with the results of FE simulation. The process
parameters were set as follows: laser power of 600 W,
scanning speed of 6 mm/s, powder feeding rate of 0.2 g/s, spot
diameter of 1.2 mm, layer thickness of 0.3 mm, scanning
strategy involving a reciprocating path with the scanning
direction reversed layer by layer, and interlayer cooling for
5 s. The process parameters for the simulation and the
experiment were consistent. The results of FE model are
shown in Fig.8. The average errors between the simulated and

Parameter optimization process

Initializing fruit fly populations

»
v

| |
| |
| |
| |
| |
| |
| |
| |
| ; |
Evaluating the fitn |

Using RMSE as the | valuting te ines value |
fitness function ! Y |
GRNN =I l :
| |
: Updated fruit fly locations :

|
C e G del Using Si as the | l :
onstructing LI et e smoothing factor | |
using the optimal smoothing ¢ i |
factor | No |
| Is the smell concentration ~—— |
l4— : value (S;) optimal? :
| |

e |
GRNN model prediction I l T :
| |
: Optimal smell concentration value (S;) :
Prediction result output !________________________'

l

End

Fig.7 Flowchart of ASSFOA-GRNN
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Fig.8 Comparison of temperatures at test point T1 (a) and test point T2 (b) obtained from FE simulation and experiment
measured temperatures at test points T1 and T2 are 4.48% and Table 3 Process parameters for test dataset
3.15%, respectively. The simulated temperature profiles align Scanning speed,  Powder feeding
well with the measured profiles, demonstrating the reliability No.  Laser power, P/W —— rate, flg's”
of the thermal analysis of FE model in the prediction of ) 400 6 04
temperature evolution during LDED process. The temperature
profile simulated by FE model is highly consistent with the 2 400 8 02
actual measured temperature profile, achieving an accuracy of 3 400 10 03
95.52%. Therefore, the data generated through FE simulation 4 500 6 0.4
can be used as an essential dataset for constructing and 5 500 8 0.3
training machine learning models. 6 500 10 02
4.2 Validation of machine learning model
, , 7 500 12 0.4
ASSFOA-GRNN model proposed in this study was
implemented into MATLAB 2019 with the relevant 8 600 6 0.2
parameters as follows: crossover probability C,=0.9, initial 9 600 8 0.4
scaling factor F=0.9, fruit fly population size of 100, and 10 600 10 0.3
maximum number of iterations of 1000. In order to validate 11 600 12 0.4
the predictive performance of this machine learning model, " 700 8 03
the results of the ASSFOA-GRNN model and FE simulations
were compared through the test dataset in two aspects: 13 700 10 0.4
temperature-time ~ distribution ~ and  temperature-spatial 14 700 12 0.2
distribution. As shown in Table 3, 18 sets of randomly 15 800 6 0.3
selected test data are presented. 16 800 ] 02
In this study, RMSE, mean absolute error (MAE), and 17 200 10 04
coefficient of determination (R?) were used to assess the
18 800 12 0.3

accuracy of temperature prediction by ASSFOA-GRNN
model™™. The closer the values of RMSE and MAE to 0, the
more accurate the prediction results. Conversely, higher
values of RMSE and MAE indicate less accurate predictions.
Similarly, the closer the value of R* to 1, the better the model
fitting result. Conversely, lower values of R* suggest an
inferior model fitting.

o~

MAE = S 5,  y

R2=1- 271<y1;1)z
2::1(%_}7")

where n is the total number of data samples, y, is the actual

(25)

(26)

value of the ith element, )7, is the predicted value
corresponding to the ith element, and y, is the predicted mean

value corresponding to the ith element.

Fig.9 Test points for comparison of results predicted by ASSFOA-
GRNN model and FE simulation
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Fig.10 Comparison of temperatures at point A (a), point B (b), point C (c), and point D (d) predicted by FE simulation and ASSFOA-GRNN
model under conditions of P=500 W, v=6 mm/s, and /=0.4 g/s
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Fig.11 Comparison of temperatures at point A (a), point B (b), point C (c), and point D (d) predicted by FE simulation and ASSFOA-GRNN
model under conditions of P=800 W, v=6 mm/s, and /=0.3 g/s

The locations of test points A, B, C, and D for verifying the D under different working conditions, and ASSFOA-GRNN
temperature-time distribution results are shown in Fig. 9. model results show high agreement with FE simulation
Fig.10 and Fig.11 show the temperature profiles at points A to results. The thermal response can be divided into four distinct
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stages. In Stage I, the peak temperature increases as the
number of deposited layers increases. In Stage II, the peak
temperature gradually stabilizes. In Stage III, as the distance
between the heat source and the substrate increases, the
energy transferred from the laser to the substrate decreases,
causing the peak temperature to decrease gradually. In Stage
IV, after complete deposition, the temperature continues to
decrease rapidly with the prolongation of cooling time.
Similar thermal characteristics can be observed for other
combinations of process parameters. Table 4 lists the predicted
temperature-time distribution results for the test dataset. The
R* values for each test point exceed 0.9970, while both the
RMSE and MAE values are below 4 °C. These results all
demonstrate that the ASSFOA-GRNN model not only
captures the characteristics of the temperature profiles but also
predicts the temperature-time distribution with high accuracy.
Fig. 12 shows the comparison of the representative
temperature-spatial distributions predicted by FE simulation
and ASSFOA-GRNN model at different deposition moments
(=50.95, 80.05 s) under No.8 condition (P=600 W, v=6 mm/s,
and f=0.2 g/s). The ASSFOA-GRNN model demonstrates
better agreement with the thermal contours generated by FE
simulation. It can be observed that as the deposition proceeds,
the heat accumulation effect becomes more pronounced, and
the temperature of the molten pool continues to rise. When the
deposition proceeds for 50.95 s, the peak temperature
simulated by FE method is 1572.18 °C, while the peak tem-
perature predicted by ASSFOA-GRNN model is 1573.62 °C,
resulting in a difference of 1.44 °C. At 80.05 s, the peak
temperature obtained from FE simulation is 1615.74 °C, while
that predicted by ASSFOA-GRNN model is 1614.89 °C, and

the difference is 0.85 ° C. The high-temperature region is
primarily concentrated in the deposition layers, which exhibit
a large temperature gradient, whereas the temperature of the
substrate farther from the upper deposition layers is lower and
the temperature gradient is smaller. A similar phenomenon can
be observed under process parameters. Table 5 lists the
predicted temperature-spatial distribution results for the test
dataset. The R* values under all conditions exceed 0.9975,
while both the RMSE and MAE values are below 3 °C. These
results indicate that the temperature fields simulated by FE
model and those predicted by ASSFOA-GRNN model are in
good agreement within an acceptable error range, and
ASSFOA-GRNN model
predicting the temperature-spatial distribution.

The abovementioned examples of predictions based on
temperature-time  distribution and  temperature-spatial
distribution show that ASSFOA-GRNN model achieves a high
level of accuracy in general. In summary, the temperature
prediction method based on ASSFOA-GRNN model proposed
in this study demonstrates the excellent feasibility of machine

demonstrates high accuracy in

learning methods to predict the temperature during LDED
process. For ASSFOA-GRNN model, the R’ value is 0.9994,
RMSE value is 2.58 °C, and MAE value is 1.94 °C.

4.3 Computational efficiency analysis of machine learning

model

Table 6 shows the computational time of ASSFOA-GRNN
model and FE simulation. To establish the training dataset, a
total of 42 group FE simulations were conducted with each
simulation duration of approximately 1.2 h. Thus, the total
time required to establish the training dataset is approximately
50.4 h. The training time for ASSFOA-GRNN model is

Table 4 Prediction results of temperature-time distribution

Point A Point B Point C Point D
No- RMSE/°C  MAE/°C R RMSE/°C  MAE/°C R RMSE/C  MAE/°C R RMSE/°C  MAE/°C R
1 3.07 2.10 0.9972 1.58 1.27 0.9978 1.80 1.36 0.9986 2.14 1.67 0.9980
2 2.27 1.77 0.9991 2.84 2.18 0.9973 2.34 1.90 0.9979 3.34 2.26 0.9984
3 1.75 1.42 0.9983 2.67 1.98 0.9986 2.03 1.55 0.9974 1.66 1.34 0.9992
4 2.74 1.81 0.9971 3.55 2.73 0.9987 1.53 1.02 0.9978 2.19 1.57 0.9994
5 221 1.56 0.9988 1.61 1.17 0.9994 3.63 3.03 0.9981 1.96 1.44 0.9976
6 1.83 1.28 0.9982 3.11 2.12 0.9988 2.55 1.78 0.9993 1.92 1.38 0.9985
7 3.59 243 0.9989 2.30 1.74 0.9990 1.55 1.21 0.9971 3.18 2.16 0.9973
8 1.79 1.37 0.9993 1.64 1.26 0.9977 2.93 2.03 0.9990 2.46 1.68 0.9975
9 2.81 1.84 0.9974 1.87 1.32 0.9986 1.99 1.36 0.9989 2.97 1.98 0.9980
10 1.78 1.24 0.9980 2.90 2.04 0.9991 3.47 2.34 0.9975 3.60 2.32 0.9983
11 2.09 1.73 0.9995 1.88 1.50 0.9987 3.02 2.24 0.9992 2.42 1.88 0.9979
12 1.74 1.37 0.9977 3.76 2.47 0.9973 2.69 1.92 0.9984 1.95 1.46 0.9994
13 3.25 2.30 0.9989 2.16 1.62 0.9992 2.07 1.54 0.9976 2.38 1.72 0.9981
14 2.57 1.82 0.9978 3.71 3.04 0.9982 1.59 1.26 0.9989 2.72 1.99 0.9985
15 1.75 1.36 0.9991 2.78 2.05 0.9975 3.41 2.26 0.9983 3.23 2.59 0.9980
16 2.51 1.89 0.9977 1.68 1.38 0.9984 3.14 2.17 0.9990 2.23 1.77 0.9971
17 3.36 2.32 0.9981 2.89 2.16 0.9991 1.66 1.31 0.9978 1.71 1.29 0.9994
18 2.49 1.78 0.9988 3.82 3.15 0.9972 2.63 1.77 0.9992 1.88 1.49 0.9990
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Fig.12 Comparison of temperature field distributions predicted by FE simulation (a—b) and ASSFOA-GRNN model (c—d) at deposition time of
50.95 s (a, ¢) and 80.05 s (b, d) under condition of P=600 W, v=6 mm/s, and /=0.2 g/s

Table S Prediction results of temperature-spatial distribution

t=50.95s =80.05 s
e RMSE/°C MAE/°C R*  RMSEFC MAEFC R
1 2.29 1.75 0.9990 1.73 136 0.9979
2 1.98 1.47 0.9982 1.86 1.40  0.9986
3 1.58 1.22 0.9977 2.96 2.18 0.9984
4 2.40 1.85 0.9980 2.58 2.08 0.9993
5 1.81 1.37 0.9979 2.06 1.63 0.9976
6 235 1.68 0.9978 1.79 1.34  0.9983
7 2.74 1.92 0.9995 1.90 1.56  0.9977
8 1.68 1.31 0.9988 2.84 2.04  0.9996
9 1.97 1.43 0.9992 2.77 2.13 0.9978
10 1.75 1.42 0.9983 1.40 1.02 0.9991
11 2.17 1.54 0.9978 2.66 1.96  0.9985
12 1.51 1.14 0.9989 2.55 1.99 0.9981
13 2.46 1.97 0.9993 1.37 1.06  0.9976
14 2.03 1.50 0.9977 2.31 1.83 0.9994
15 1.63 1.24 0.9990 1.84 136 0.9982
16 1.97 1.43 0.9987 1.35 1.04  0.9992
17 2.61 1.86 0.9989 1.49 1.12 0.9976
18 1.66 1.24 0.9978 2.24 1.61 0.9986

approximately 2.8 h. After training, the model can predict the
temperature in only 10 s, greatly improving the computational
efficiency by a factor of 432 compared to FE simulation.
Since the training of the ASSFOA-GRNN model relies on the

database established through FE simulations, ASSFOA-
GRNN model does not show a significant advantage over FE
simulations when making temperature predictions for small
batches. However, when large batches of temperature fields
for uncertainty quantification or process
optimization are required, the application of ASSFOA-GRNN

parameter

model can significantly improve computational efficiency.
4.4 Comparison of predictive performance with other

models

To further evaluate the prediction performance of ASSFOA-
GRNN model, the prediction results of different machine
learning models, including back-propagation neural network
(BPNN) model, GRNN model, and FOA-GRNN model, were
compared with those of ASSFOA-GRNN model on the test
dataset. The parameters for all models were set to their
optimal values. BPNN model is a multilayer feed-forward
network model trained by the error back-propagation
algorithm. Its network structure primarily consists of input,
hidden, and output layers. The pertinent parameters of BPNN
model are as follows. The maximum number of iterations was
5000, the learning rate was 0.01, the minimum error for the
training objective was 0.000 01, and the number of hidden
layers was 8. The smoothing factor of GRNN model was 0.1.
The pertinent parameters for the FOA-GRNN model were as
follows: the fruit fly population size was 100 and the
maximum number of iterations was 2000.

Table 7 shows the comparison results of the predictive

performance of different machine learning models. The

Table 6 Comparison of computational time between ASSFOA-GRNN model and FE simulation

Method Time to establish the training dataset/h

Training time/h Time to calculate a single temperature field

ASSFOA-GRNN model 50.4

FE simulation -

2.8 10s
- 1.2h
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Table 7 Comparison results of predictive performance of

different machine learning models

RMSE/ MAE/ Training Prediction
Model
°C °C time/h time/s
ASSFOA-GRNN  2.58 1.94  0.9994 2.8 10
FOA-GRNN 13.61 9.83 09132 2.6 9
GRNN 22.93 16.15 0.8713 43 17
BPNN 3847  29.86 0.6207 9.2 38

evaluation metrics for the models include RMSE, MAE, R?
training time, and prediction time. It can be seen that the
RMSE and MAE values of GRNN model are significantly
smaller than those of BPNN model, and the R’ is notably
better. This indicates that the prediction accuracy of GRNN
model is higher than that of BPNN model. This is because
BPNN model uses the gradient descent method to update the
weights, which can easily lead to local minima and prevent
the model from finding the global optimal solution. Therefore,
using GRNN model in this study for temperature prediction is
reasonable. Compared with those of GRNN model, the RMSE
and MAE values of FOA-GRNN model are reduced: RMSE
decreases by 40.65% and MAE decreases by 39.13%. The R
value of FOA-GRNN model is slightly better than that of
GRNN model and significantly better than that of BPNN
model. This result indicates that although the unoptimized
GRNN model has strong fitting ability, its predictive
performance is restricted. Compared with that of FOA-
GRNN, GRNN, and BPNN models, RMSE value of ASSFOA-
GRNN model reduces by 81.04%, 88.75%, and 93.29%,
respectively. Compared with that of FOA-GRNN, GRNN, and
BPNN models, MAE value reduces by 80.26%, 87.99%, and
93.50%, respectively. Meanwhile, the R* increases by 9.44%,
14.70%, and 61.01%, compared with that of FOA-GRNN,
GRNN, and BPNN models, respectively. These improvements
all demonstrate that ASSFOA-GRNN model outperforms the
other models in terms of prediction accuracy.

In addition to prediction accuracy, prediction efficiency is
another critical metric for evaluating algorithms. The predic-
tion efficiency of BPNN model is significantly lower than that
of GRNN model. This is because GRNN model requires fewer
parameters to be preset and eliminates the complex backpro-
pagation process. The prediction efficiency of FOA-GRNN
model is significantly improved compared with that of GRNN
model because FOA can quickly find the optimal smoothing
factor with fewer iterations. The slight decrease in prediction
efficiency of ASSFOA-GRNN model, compared with that of
the FOA-GRNN model, is due to the additional computational
steps required by the mutation and crossover operations in-
troduced in FOA, which increase the algorithm’s compu-
tational complexity. Based on the abovementioned discus-
sion, the ASSFOA-GRNN model achieves the optimal results
in terms of RMSE, MAE, and R* metrics. Although its
prediction efficiency is slightly lower than that of FOA-
GRNN model, its prediction accuracy far exceeds that of the
other models. Considering the trade-off between prediction

accuracy and efficiency, ASSFOA-GRNN model demonstrates
the optimal overall performance among these four temperature
prediction models.

5 Conclusions

1) The temperature profile simulated by FE model is highly
consistent with the actual measured temperature profile,
achieving an accuracy of 95.52%. The model error is within
an acceptable range. Consequently, the data generated by FE
simulation can serve as a dataset for training machine learning
models.

2) ASSFOA-GRNN temperature prediction model can
accurately predict the temperature during LDED process,
achieving very high accuracy. The R* value is 0.9994, RMSE
value is 2.58 °C, and MAE value is 1.94 °C. The training time
for the model is approximately 2.8 h, and only 10 s is required
to make a quick temperature prediction after training.

3) ASSFOA-GRNN model is compared with BPNN,
GRNN, and FOA-GRNN models. The results indicate that the
ASSFOA-GRNN model achieves the highest prediction
accuracy among all the compared models. In terms of
prediction efficiency, the ASSFOA-GRNN model outperforms
both the GRNN and BPNN models, though it is slightly less
efficient than the FOA-GRNN model.

4) Overall, ASSFOA-GRNN model in this study performs
excellently in temperature prediction. It not only significantly
improves prediction efficiency while ensuring accuracy, but
also demonstrates high practicality and application potential,
making it highly significant for temperature prediction in
LDED process.
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