
Rare Metal Materials and Engineering
Volume 54, Issue 10, October 2025
Available online at www.rmme.ac.cn

Cite this article as: Li Dianqi, Chai Yuanxin, Miao Liguo, et al. Temperature Prediction of Laser Directed 

Energy Deposition Based on ASSFOA-GRNN Model[J]. Rare Metal Materials and Engineering, 2025, 54(10): 

2470-2482. DOI: https://doi.org/10.12442/j.issn.1002-185X.20240530.

Temperature Prediction of Laser Directed Energy DepositionTemperature Prediction of Laser Directed Energy Deposition  
Based on ASSFOA-GRNN ModelBased on ASSFOA-GRNN Model
Li Dianqi1,    Chai Yuanxin1,    Miao Liguo1,    Tang Jinghu2

1 School of Mechanical Engineering, Shenyang University of Technology, Shenyang 110870, China; 2 School of Mechanical Engineering and 

Automation, Northeastern University, Shenyang 110819, China

Abstract: To address the issues of low accuracy, long time consumption, and high cost of the traditional temperature prediction 
methods for laser directed energy deposition (LDED), a machine learning model combined with numerical simulation was proposed 
to predict the temperature during LDED. A finite element (FE) thermal analysis model was established. The model 􀆳s accuracy was 
verified through in-situ monitoring experiments, and a basic database for the predictive model was obtained based on FE simulations. 
Temperature prediction was performed using a generalized regression neural network (GRNN). To reduce dependence on human 
experience during GRNN parameter tuning and to enhance model prediction performance, an improved adaptive step-size fruit fly 
optimization algorithm (ASSFOA) was introduced. Finally, the prediction performance of ASSFOA-GRNN model was compared 
with that of back-propagation neural network model, GRNN model, and fruit fly optimization algorithm (FOA)-GRNN model. The 
evaluation metrics included the root mean square error (RMSE), mean absolute error (MAE), coefficient of determination (R2), 
training time, and prediction time. Results show that the ASSFOA-GRNN model exhibits optimal performance regarding RMSE, 
MAE, and R2 indexes. Although its prediction efficiency is slightly lower than that of the FOA-GRNN model, its prediction accuracy 
is significantly better than that of the other models. This proposed method can be used for temperature prediction in LDED process 
and also provide a reference for similar methods.
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11  Introduction  Introduction

Laser directed energy deposition (LDED) technique uses 

high-energy laser beam to melt metal powder, and the powder 

stream is coaxial with the laser beam. As the heat source 

moves, the metal powder is rapidly melted and solidified, 

enabling deposition forming in point-by-point, line-by-line, 

and layer-by-layer manner[1–3]. LDED technique has several 

advantages, including high deposition efficiency, unlimited 

forming size, capability to prepare functional gradient 

materials, and the ability to repair and remanufacture critical 

components. Thus, LDED is widely used in various fields, 

such as aerospace, biomedicine, automotive, marine, and 

nuclear power. However, LDED is a high-energy processing 

technique, and the localized high-energy density heat input 

causes rapid heating and cooling of materials. This 
phenomenon generates an inhomogeneous temperature field, 
leading to significant residual stress, and potentially resulting 
in deformation, cracking, or even scrap of the part[4–6]. 
Therefore, accurately and efficiently predicting the 
temperature during LDED process is crucial.

With the rapid development of computer technology, 
numerical simulation has become a crucial tool to predict 
temperature evolution in the additive manufacturing process. 
Meng et al[7] developed a three-dimensional transient 
thermoelastic-plastic model for LDED process, which allows 
dynamic simulation of the temperature field with various 
process parameters and scanning strategies, achieving a 
simulation accuracy of approximately 82%. Dantin et al[8] 
created a finite-element (FE) model to predict the thermal 
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history of Ti-6Al-4V alloys and validated it through molten 
pool data collected by a dual-wavelength pyrometer. 
Pourabdollah et al[9] developed a three-dimensional transient 
thermodynamic model based on the layer aggregation method 
to rapidly predict the temperature in hollow rectangular parts 
during deposition. The prediction results were in good 
agreement with the measured data. Although these studies can 
predict the temperature during the forming process, they are 
only used in scientific research and are not suitable for 
industrial applications due to constraints related to 
computational cost, memory requirements, and the need for 
specialized expertise. With the rapid development of artificial 
intelligence technology, machine learning, which is well-
known for its balance of computational cost and prediction 
capability, is gradually applied to temperature prediction in 
additive manufacturing processes. Zhou et al[10] proposed a 3D 
correction matrix based on a cubic mesh to describe the laser 
deposition state and used it as input for recurrent neural 
network (RNN)-deep neural network (DNN) model to predict 
the temperature field in gas metal arc welding, achieving a 
prediction accuracy of over 94%. However, because the size 
of the 3D input matrix determines the number of cells in the 
model, the actual size of additive manufacturing parts is 
restricted. Ren et al[11] established a thermal analysis model 
that combines RNN and DNN, achieving a prediction 
accuracy of over 95%. However, the model only applies to 
single-layer or single-track temperature field. Stathatos et al[12] 
proposed a custom-scanning path decomposition method and 
used artificial neural networks to predict the temperature 
evolution along arbitrarily long paths in laser additive 
manufacturing. Similarly, the model can only be validated for 
single-layer temperature fields. Zhu et al[13] developed a 
physically informed neural network model, which integrates 
data and physical principles to predict the temperature field in 
metallic additive manufacturing. This model achieves high 
prediction accuracy despite a limited training dataset. 
However, it does not account for the effects of free surface 
deformation and evaporation phenomena in the molten pool. 
Paul et al[14] developed a temperature prediction model based 
on an extremely random tree. This model takes previous voxel 
temperature and laser information as input and predicts the 
temperature of subsequent voxels with a mean absolute 
percentage error of less than 1%. However, as the feature set 
of the prediction model depends on neighboring voxels within 
a uniform mesh of rectangular elements, the geometric model 
must be simplified to generalize irregular geometries and 
meshes. Although machine learning methods offer new ways 
to predict the temperature in LDED, they are less effective in 
predicting temperature in short periods and require long 
training time as well as sophisticated analytical capabilities.

In this research, a method that combines machine learning 
with FE simulation was proposed to predict the temperature 
during LDED process. FE thermal analysis model was 
established and validated by in-situ temperature measurement 
experiments. Additionally, a database of machine learning 
models was created based on FE simulations. A generalized 

regression neural network (GRNN) was used to predict 
temperature with the optimal smoothing factor determined by 
an improved adaptive step-size fruit fly optimization 
algorithm (ASSFOA). Finally, the prediction performance of 
ASSFOA-GRNN model was compared with that of other 
machine learning models. The prediction model in this 
research provides reference for future studies to explore the 
effects of process parameters on the temperature field 
distribution of deposited parts, eliminating the need for 
complex FE analysis.

22  Experiment  Experiment

The deposited material was Inconel 718 spherical powder 
prepared by the gas atomization method, whose particle size is 
15–53 μm, and its chemical composition is shown in Table 1. 
Thin-walled parts with 20 mm in length and 6 mm in 
thickness were deposited onto Inconel 718 sheets with dimen-
sions of 40 mm×40 mm×8 mm, and there were 20 layers in 
total. Before the experiment, the metal powder was dried to 
remove entrapped moisture and to improve its fluidity. The 
substrate surface was sanded to remove the oxide film and to 
enhance the absorption of the heat source. Finally, the sub-
strate surface was cleaned with ethanol and dried to remove 
rust, oil, and dust. The temperature changes during the deposi-
tion process were drastic, and the thermo-physical property 
parameters of the material changed nonlinearly with the 
temperature. According to Ref. [15 – 17], the thermo-physical 
property parameters of Inconel 718 are shown in Fig.1.

The forming experiments were conducted using the 
Raycham LDM 4030 metal deposition system developed by 
Nanjing Zhongke Yuchen Laser Technology Co., Ltd. The 
laser has wavelength of 1070 nm and maximum output power 
of 2 kW, and argon was used as the protective gas. An 
aluminum oxide insulation board (80 mm×80 mm×6 mm) 
with excellent thermal insulation properties was placed 
between the substrate and the worktable. Temperature data at 
the test points on the substrate surface were recorded using 
type-K thermocouples (diameter of 1 mm) and TA612C multi-
channel temperature data collector. The in-situ temperature 
measurement system is shown in Fig. 2. The measurement 
positions (T1 and T2) should be as close as possible to the 
heat source while maintaining a sufficient distance to avoid 
damage to the thermocouples.

33  Method  Method

3.1  Thermal history dataset establishment 
Numerous scholars have recognized that the main process 

parameters significantly impacting the temperature during 
deposition include laser power, scanning speed, and powder 
feeding rate[18–20]. Multiple levels were considered for each 
parameter, as shown in Table 2, and a total of 60 sets of 

Table 1  Chemical composition of Inconel 718 (wt%)

Ni

51.71

Cr

18.93

Nb

5.12

Mo

3.08

Mn

0.13

Si

0.14

Al

0.49

Cu

0.05

Ti

0.97

C

0.04

Fe

Bal.
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numerical simulations were performed. The dataset was 
divided with a ratio of 7:3, i.e., 42 sets of data for training and 
18 sets for testing. The training and test datasets included the 
thermal history of all mesh points on the deposited track and 
the substrate.

This study used the thermodynamic coupling model 
developed in Ref. [21] to perform FE simulations, generating 
the thermal history dataset required for the machine learning 
model. The governing equation for nonlinear transient heat 
transfer in LDED process[22] is as follows:

∂
∂x (kx

∂T
∂x ) +

∂
∂y (ky

∂T
∂y ) +

∂
∂z (kz

∂T
∂z ) + q = ρc

∂T
∂t (1)

where kx, ky, and kz are the thermal conductivities in the x, y, 
and z directions, respectively; q is the heat flux density; ρ is 
the material density; c is the specific heat of material; T is 
temperature.

FE analysis was conducted using a double ellipsoid heat 
source model, where the laser energy was distributed in a 
certain volume and applied to the nodes of the material model 
as heat flux density, as shown in Fig.3.

The heat flux density of the model along the front and rear 
semi-axes[23–24] of the ellipsoid is expressed by Eq. (2 – 3), 
respectively, as follows:
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Fig.1  Thermo-physical property parameters of Inconel 718[15–17]: (a) specific heat, (b) thermal conductivity, and (c) density

Metal deposition equipmentMetal deposition equipment

Fig.2  In-situ temperature measurement system

Table 2  Process parameters for thermal history dataset 

establishment

Process parameter

Laser power, P/W

Scanning speed, v/mm·s−1

Powder feeding rate, f/g·s−1

Laser spot diameter, d/mm

z-incremental height/mm

Value

400, 500, 600, 700, 800

6, 8, 10, 12

0.2, 0.3, 0.4

1.2

0.3

z

ar

af

x

c
b y

Fig.3  Schematic diagram of double ellipsoid heat source model
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where ff and fr are the heat flux distribution coefficients of the 
front and rear ellipsoids, respectively, and ff+fr=2; af and ar are 
the lengths of the front and rear ellipsoids, respectively; b is 
the width of the heat source; c is the depth of the heat source; 
Q is the effective thermal power. Q can be expressed by       
Eq.(4), as follows:

Q = Pη (4)

where P is the laser power and η is the material absorption 
rate of laser energy.

The initial temperature condition during deposition is as 
follows:

T ( x, y, z, t ) |t = 0 = T0 (5)

where t is time and T0 is initial temperature.
The initial temperature of the metal powder and substrate is 

assumed to be 25 °C, according to the surrounding ambient air 
temperature.

The heat exchange during deposition is dominated by ther-
mal convection and thermal radiation. The thermal boundary 
condition conforms to the third type of boundary condition[25]:

-k
∂T
∂n = hc(T - T0 ) + φχ (T 4 - T 4

0 ) (6)

where k is the thermal conductivity, 
∂T
∂n  is the temperature 

gradient, hc is the convective heat transfer coefficient, T is the 
surface temperature of the boundary of the object, T0 is the 
temperature of the surrounding ambient medium, φ is the 
emissivity (ranging from 0 to 1), and χ is the Stefan-
Boltzmann coefficient (approximately 5.67×10−8 W·m−2·K−4).

The birth-death element technique was employed to 
simulate the deposition process of the part. In order to balance 
computational efficiency and accuracy, a mesh convergence 
study was conducted[26–28]. A fine mesh with a minimum size of 
1 mm was used in the deposition region and its neighboring 
areas, and the mesh was gradually coarsened with the increase 
in the distance from the deposition region. A total of 5238 
cells and 7624 nodes were generated. The geometric meshing 
and scanning strategy of FE model are shown in Fig. 4. The 
scanning strategy employed the reciprocating paths with 
alternating scanning directions layer by layer.

Both the FE-based thermal simulations and the extraction 

of the dataset were performed on a workstation equipped with 
a 24-core processor (3.0 GHz) and 128 GB RAM. In machine 
learning, different features typically have different 
dimensions, directly affecting prediction performance. To 
mitigate the impact of varying feature dimensions, data 
normalization is necessary, as shown in Eq. (7), which maps 
the data to the range between 0 and 1[29]:

xn =
xi - xmin

xmax - xmin

(7)

where xn is the normalized data, xi is the original data, xmin is 
the minimum value of the data, and xmax is the maximum value 
of the data.
3.2  Prediction model development

3.2.1　GRNN

GRNN is a highly parallel radial-basis neural network, and 
it was proposed in 1991. It has strong nonlinear mapping 
ability and fault tolerance, and it can better explain the 
complex nonlinear relationships between the predicted object 
and multiple influencing factors[30]. The model also performs 
better when the network data are sparse and can obtain 
optimized regression surfaces that converge with larger 
sample sizes and clustering. GRNN consists of a four-layer 
network, including an input layer, a pattern layer, a summation 
layer, and an output layer, as shown in Fig.5.

The essential functions of each layer in the network are as 
follows[31–33]:

(1) Input layer
The number of neurons in the input layer is determined by 

the dimensionality of the input data, and its role is to transmit 
the input data directly to the pattern layer.

(2) Pattern layer
The number of neurons in the pattern layer is the same as 

that in the input layer, and the transfer function is as follows:
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Fig.4  Schematic diagram of geometric meshing and scanning strategy
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Fig.5  Schematic diagram of GRNN structure
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where X represents the input parameter of the network, Xi 
denotes the learning sample corresponding to the ith neuron, 
and σ is the smoothing factor.

(3) Summation layer
The summation layer consists of two types of neurons. One 

type performs an arithmetic summation of the outputs from all 
the pattern layers. The transfer function for this type is 
denoted as follows:

SD =∑i = 1

n Pi (9)

The other type of neuron performs a weighted summation 
of the outputs from all the pattern layers. The transfer function 
for this type is expressed as follows:

SNj =∑i = 1

n yij Pi     ( j = 1, 2, ⋯, k ) (10)

where yij represents the weight between the ith neuron in the 
pattern layer and the jth neuron in the summation layer.

(4) Output layer
The number of neurons in the output layer equals the 

dimension value k of the output vector in the learning sample. 
Dividing the weighted summation output of the neurons in the 
summation layer by the arithmetic summation output gives the 
output of each neuron as follows:

yj =
SNj

SD

     ( j = 1, 2, ⋯, k ) (11)

GRNN determines its structure and connection weights 
based on the learning samples, and only the smoothing factor 
σ is adjustable. The model􀆳s predictive performance largely de-
pends on the value of this smoothing factor σ[34]. As σ 
approaches 0, the predicted value tends to be the mean of all 
sample data, resulting in a significant prediction error. 
Conversely, as σ approaches infinity, the predicted value 
closely matches the training samples, which deteriorates the 
model􀆳s generalization ability and leads to overfitting, ultima-
tely reducing prediction accuracy. The traditional method for 
determining the smoothing factor is often based on prior 
experience or through linear iteration. However, this approach 
is subjective, prone to randomness, and more likely to settle 
into a local optimum, significantly restricting the model􀆳s pre-
dictive capability[35]. To address this restriction, this study 
employs an intelligent optimization algorithm to ascertain the 
optimal smoothing factor for GRNN and to enhance its 
prediction performance.
3.2.2　ASSFOA

Fruit fly optimization algorithm (FOA) is an emerging 
swarm intelligence optimization method inspired by the 
foraging behavior of fruit fly populations. Compared to other 
swarm intelligence algorithms, FOA leverages fruit flies 􀆳 uni-
que olfactory and visual senses, offering advantages, such as 
simple implementation process, fewer parameters, strong 
searching capability, and rapid convergence. As a result, FOA 
has been widely applied in scientific research and practical 
engineering. Fig.6 illustrates the iterative evolutionary process 
of fruit fly populations. Based on the characteristics of the 
foraging behavior of fruit fly populations, FOA search process 
is as follows[36–38].

(1) Initialization of parameters. The parameters include 

population size (sizepop), maximum number of iterations 
(maxgen), and randomly initializing the position of the fruit 
fly population (Xaxis, Yaxis).

(2) Olfactory search. When an individual fruit fly searches 
for food using its sense of smell, it is randomly assigned a 
direction and distance, and its position is updated, as follows:

{Xi = Xaxis + RandomValue
Yi = Yaxis + RandomValue

(12)

(3) Calculate the smell concentration judgment value. Since 
the exact position of the food cannot be determined initially, it 
is necessary to calculate the distance Disti between the current 
position of the fruit fly and the origin position. Then, compute 
the smell concentration judgment value Si for each fruit fly.

ì
í
î

ïï
ïï

Dist i = X 2
i + Y 2

i

Si = 1/Dist i

(13)

(4) Calculate the smell concentration value. Compute the 
smell concentration value Smelli for each fruit fly by 
substituting the fruit fly 􀆳s smell concentration judgment value 
Si into the smell concentration judgment fitness function.

Smell i = Fitnessfunction (Si ) (14)

(5) Find the optimal individual. Identify the individual fruit 
fly with the best smell concentration value in the fruit fly 
population, and record its concentration and location.

[bestSmell,  bestIndex ] = min (Smell) (15)

(6) Visual localization. Record the fruit fly with the optimal 
smell concentration value in the current fruit fly population 
and its coordinates. If this smell concentration value is better, 
the fruit fly population will move to the new location.

ì

í

î

ïïïï

ïïïï

Smellbest = bestSmell

Xaxis = X ( )bestIndex

Yaxis = Y ( )bestIndex

(16)

(7) Iterative optimization search. Repeat steps (2) – (5) to 
determine whether the optimal smell concentration value 
exceeds that of the previous generation until the number of 
iterations reaches the maximum value.

However, the standard FOA uses a fixed step size during its 

Fig.6  Iterative evolution procedure of FOA
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iteration process. Increasing the step size enhances global 
search ability in the early stages and speeds up convergence. 
However, in the later stages of iteration, as the fruit fly 
population gets closer to the target, a larger step size can 
reduce local search ability, lower convergence accuracy, and 
may even cause the algorithm to oscillate around the 
neighborhood of the optimal solution without reaching it. If 
the step size is smaller, the local search ability of the fruit fly 
is enhanced, and convergence accuracy is improved. However, 
the convergence speed is slower in the early stages, which 
hinders global search and may cause the algorithm to fall into 
a local optimum. Therefore, this study used an adaptive step-
size to balance global and local search abilities. The mutation 
and crossover operations from the differential evolution (DE) 
algorithm were incorporated into FOA, resulting in an 
improved algorithm: ASSFOA.

DE algorithm, proposed in 1995, is a stochastic heuristic 
search algorithm that simulates the “survival of the fittest”
principle in natural biological populations. It has the 
advantages of simple principle, fast convergence, few 
controlled parameters, and strong robustness[39]. The basic 
principle of DE algorithm is as follows. Start with a randomly 
generated initial population of NP individuals in a D-
dimensional space. A mutation operation is firstly applied to 
selected individuals to generate mutant individuals. Next, a 
crossover operation is performed between the mutated 
individuals and the corresponding target individuals to create 
test individuals. Finally, based on the fitness of the test and 
target individuals, the best individuals are selected to form the 
next generation. Through continuous iterative optimization, 
DE algorithm systematically eliminates poorly adapted 
individuals while retaining the elite ones. This process ensures 
that the population gradually converges towards the global 
optimal solution. The three core steps of DE algorithm 
(mutation, crossover, and selection) are detailed below[40–42].

(1) Mutation operation
The mutation operation aims to transform each target 

individual in the parent population into a mutant individual. 
After evaluating several mutation strategies, the “DE/best/2” 
strategy is selected:

V g
i = X g

b + F × ( X g
r1
- X g

r2 ) + F × ( X g
r3
- X g

r4 ) (17)

where V g
i  is the mutation vector; X g

i  is the target vector; X g
b  is 

the optimal individual obtained at the gth generation; F is a 
scaling factor, which controls the effect of the difference 
vector and takes values in the range [0, 1]; r1, r2, r3, r4, and r5 
are randomly selected integers from the range [1, NP], distinct 
from each other and the index i, i.e., r1 ≠ r2 ≠ r3 ≠ r4 ≠ r5 ≠ i.

(2) Crossover operation

After generating the mutation vector V g
i = (vg

i,1, v
g
i,2, ⋯, vg

i,D ) 
corresponding to the target vector X g

i = ( xg
i,1, x

g
i,2, ⋯, xg

i,D ), the 

test vector U g
i = (ug

i,1, u
g
i,2, ⋯, ug

i,D ) is generated through a 

crossover operation. The common crossover operation in 
differential evolution is the binomial crossover:

ug
i,j =

ì
í
î

ïï
ïï

vg
i,j     If rand ≤CR or j = jrand

xg
i,j     Otherwise

(18)

where rand is a uniformly distributed random number in the 
interval [0, 1]; CR∈ [0, 1] is the crossover probability; jrand∈    
[1, D] is a randomly selected dimension index, ensuring that 
at least one component of the test vector comes from the 
mutation vector.

(3) Selection operation
After generating the test vector through mutation and 

crossover operations, the fitness of the target vector and the 
test vector is compared using a selection operation. 
Consequently, the best individual is selected for the next 
generation to ensure that each iteration of the population 
evolution progresses toward the global optimum. The specific 
selection operation is detailed below:

X g + 1
i =

ì
í
î

ïï
ïï

U g
i      If  f ( )U g

i ≤ f ( )X g
i

X g
i      Otherwise

(19)

where f(X) is the fitness of the individual vector X.
In this study, the stochastic search step size of the standard 

FOA was updated using mutation and crossover operations. 
Meanwhile, the scaling factor was gradually decreased to 
enhance the optimization search capability of algorithm. The 
improvement strategy is as follows:

(1) Improved search step size
The search step size of the standard FOA is fixed. However, 

with the incorporation of the mutation operation from DE 
algorithm, the step size is dynamically updated based on the 
differences among population individuals, thereby enhancing 
the algorithm􀆳s capability to search for optima.

ì
í
î

ïïïï

ïïïï

Ux,j = Xaxis + F × ( )Xr1,j - Xr2,j + F × ( )Xr3,j - Xr4,j

Uy,j = Yaxis + F × ( )Yr1,j - Yr2,j + F × ( )Yr3,j - Yr4,j

(20)

where r1, r2, r3, and r4 are random numbers within the interval 
[1, NP], and NP is the population size. To further increase the 
diversity of the population, the search step size continues to 
update using the crossover operation:

RandomValuex =
ì
í
î

Ux,j     If  rand ≤CR  or  j = jrand

Xaxis   Otherwise
(21)

RandomValuey =
ì
í
î

Uy,j     If  rand ≤CR  or  j = jrand

Yaxis    Otherwise
(22)

(2) Improved scaling factor
In the early stages of iteration, when the population is far 

from the optimal solution, a larger search step size can 
enhance the algorithm 􀆳 s global search capability, allowing   
the fruit fly individuals to quickly reach the vicinity of         
the optimal solution. Once in the neighborhood of the   
optimal solution, the smaller search step size improves        
the algorithm 􀆳 s local search ability, enabling the optimal    
solution to be found more rapidly. Based on the 
abovementioned ideas, the scaling factor is improved to 
gradually decrease during the iteration process, thereby 
enhancing the algorithm 􀆳s local search ability while ensuring 
the diversity of the population. The formula for the scaling 

2475



Li Dianqi et al. / Rare Metal Materials and Engineering, 2025, 54(10):2470-2482

factor improvement is as follows:

Fg + 1 = Fg -
F0

gmax

(23)

where g is the current iteration number, gmax is the maximum 

iteration number, and F0 is the initial scaling factor.

3.2.3　Optimization of GRNN based on ASSFOA

The performance of GRNN is mainly affected by the 

smoothing factor σ. In this study, ASSFOA was employed to 

quickly optimize the smoothing factor of GRNN. The 

ASSFOA-GRNN model was used to predict the temperature 

during LDED process. The input variables include the 

coordinates (x, y, z) of the mesh points, laser power P, 

scanning speed v, and powder feeding rate f, while the 

predicted temperature T at the mesh points serves as the 

output variable. The prediction process of the ASSFOA-

GRNN model mainly consists of two steps. (1) Internal 

parameter optimization: to ensure the validity and stability of 

the prediction model, the root mean square error (RMSE) 

between the predicted and actual values should be minimized, 

and the optimal smoothing factor for the GRNN is determined 

using ASSFOA. (2) External performance evaluation: the 

prediction model is constructed based on the determined 

optimal smoothing factor to predict the temperature during 

LDED process. The algorithm flow of the ASSFOA-GRNN 

model is illustrated in Fig.7.

RMSE =
1
n∑i = 1

n ( )yi - yi

2

(24)

where n is the total number of data samples, yi is the actual 

value corresponding to the ith moment, and yi is the predicted 

value corresponding to the ith moment.

44  Results and Discussion  Results and Discussion

4.1  Validation of thermal analysis of FE model

Before using simulated data to train the ASSFOA-GRNN 
model, the accuracy of FE model must be verified through 
actual deposition experiments. Ref. [21] has already validated 
the used FE model. To ensure the accuracy of the training data 
for the predictive model, a preliminary validation was 
conducted, though it is not analyzed in detail.

The temperature data from the test points on the surface of 
the substrate were measured using type-K thermocouples and 
compared with the results of FE simulation. The process 
parameters were set as follows: laser power of 600 W, 
scanning speed of 6 mm/s, powder feeding rate of 0.2 g/s, spot 
diameter of 1.2 mm, layer thickness of 0.3 mm, scanning 
strategy involving a reciprocating path with the scanning 
direction reversed layer by layer, and interlayer cooling for     
5 s. The process parameters for the simulation and the 
experiment were consistent. The results of FE model are 
shown in Fig.8. The average errors between the simulated and 

Fig.7  Flowchart of ASSFOA-GRNN
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measured temperatures at test points T1 and T2 are 4.48% and 
3.15%, respectively. The simulated temperature profiles align 
well with the measured profiles, demonstrating the reliability 
of the thermal analysis of FE model in the prediction of 
temperature evolution during LDED process. The temperature 
profile simulated by FE model is highly consistent with the 
actual measured temperature profile, achieving an accuracy of 
95.52%. Therefore, the data generated through FE simulation 
can be used as an essential dataset for constructing and 
training machine learning models.
4.2  Validation of machine learning model 

ASSFOA-GRNN model proposed in this study was 
implemented into MATLAB 2019 with the relevant 
parameters as follows: crossover probability CR=0.9, initial 
scaling factor F0=0.9, fruit fly population size of 100, and 
maximum number of iterations of 1000. In order to validate 
the predictive performance of this machine learning model, 
the results of the ASSFOA-GRNN model and FE simulations 
were compared through the test dataset in two aspects: 
temperature-time distribution and temperature-spatial 
distribution. As shown in Table 3, 18 sets of randomly 
selected test data are presented.

In this study, RMSE, mean absolute error (MAE), and 
coefficient of determination (R2) were used to assess the 
accuracy of temperature prediction by ASSFOA-GRNN 
model[43–45]. The closer the values of RMSE and MAE to 0, the 
more accurate the prediction results. Conversely, higher 
values of RMSE and MAE indicate less accurate predictions. 
Similarly, the closer the value of R2 to 1, the better the model 
fitting result. Conversely, lower values of R2 suggest an 
inferior model fitting.

MAE =
1
n∑i = 1

n || yi - yi (25)

R2 = 1 -
∑i = 1

n ( )yi - yi

2

∑i = 1

n ( )yi -
-
yi

2
(26)

where n is the total number of data samples, yi is the actual 

value of the ith element, yi is the predicted value 

corresponding to the ith element, and 
-
yi is the predicted mean 

value corresponding to the ith element.
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Fig.8  Comparison of temperatures at test point T1 (a) and test point T2 (b) obtained from FE simulation and experiment

Table 3  Process parameters for test dataset

No.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

Laser power, P/W

400

400

400

500

500

500

500

600

600

600

600

700

700

700

800

800

800

800

Scanning speed,

v/mm·s−1

6

8

10

6

8

10

12

6

8

10

12

8

10

12

6

8

10

12

Powder feeding

rate, f/g·s−1

0.4

0.2

0.3

0.4

0.3

0.2

0.4

0.2

0.4

0.3

0.4

0.3

0.4

0.2

0.3

0.2

0.4

0.3

 

A 
B 

C 

D 

10 mm 
17 mm 

20 mm 

15 mm 

12 mm 
8 mm 

Fig.9  Test points for comparison of results predicted by ASSFOA-

GRNN model and FE simulation
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The locations of test points A, B, C, and D for verifying the  

temperature-time distribution results are shown in Fig. 9. 

Fig.10 and Fig.11 show the temperature profiles at points A to 

D under different working conditions, and ASSFOA-GRNN 

model results show high agreement with FE simulation 

results. The thermal response can be divided into four distinct 
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stages. In Stage I, the peak temperature increases as the 
number of deposited layers increases. In Stage II, the peak 
temperature gradually stabilizes. In Stage III, as the distance 
between the heat source and the substrate increases, the 
energy transferred from the laser to the substrate decreases, 
causing the peak temperature to decrease gradually. In Stage 
IV, after complete deposition, the temperature continues to 
decrease rapidly with the prolongation of cooling time. 
Similar thermal characteristics can be observed for other 
combinations of process parameters. Table 4 lists the predicted 
temperature-time distribution results for the test dataset. The 
R2 values for each test point exceed 0.9970, while both the 
RMSE and MAE values are below 4 ° C. These results all 
demonstrate that the ASSFOA-GRNN model not only 
captures the characteristics of the temperature profiles but also 
predicts the temperature-time distribution with high accuracy.

Fig. 12 shows the comparison of the representative 
temperature-spatial distributions predicted by FE simulation 
and ASSFOA-GRNN model at different deposition moments  
(t=50.95, 80.05 s) under No.8 condition (P=600 W, v=6 mm/s, 
and f=0.2 g/s). The ASSFOA-GRNN model demonstrates 
better agreement with the thermal contours generated by FE 
simulation. It can be observed that as the deposition proceeds, 
the heat accumulation effect becomes more pronounced, and 
the temperature of the molten pool continues to rise. When the 
deposition proceeds for 50.95 s, the peak temperature 
simulated by FE method is 1572.18 °C, while the peak tem-
perature predicted by ASSFOA-GRNN model is 1573.62 °C, 
resulting in a difference of 1.44 ° C. At 80.05 s, the peak 
temperature obtained from FE simulation is 1615.74 °C, while 
that predicted by ASSFOA-GRNN model is 1614.89 °C, and 

the difference is 0.85 ° C. The high-temperature region is 
primarily concentrated in the deposition layers, which exhibit 
a large temperature gradient, whereas the temperature of the 
substrate farther from the upper deposition layers is lower and 
the temperature gradient is smaller. A similar phenomenon can 
be observed under process parameters. Table 5 lists the 
predicted temperature-spatial distribution results for the test 
dataset. The R2 values under all conditions exceed 0.9975, 
while both the RMSE and MAE values are below 3 °C. These 
results indicate that the temperature fields simulated by FE 
model and those predicted by ASSFOA-GRNN model are in 
good agreement within an acceptable error range, and 
ASSFOA-GRNN model demonstrates high accuracy in 
predicting the temperature-spatial distribution.

The abovementioned examples of predictions based on 
temperature-time distribution and temperature-spatial 
distribution show that ASSFOA-GRNN model achieves a high 
level of accuracy in general. In summary, the temperature 
prediction method based on ASSFOA-GRNN model proposed 
in this study demonstrates the excellent feasibility of machine 
learning methods to predict the temperature during LDED 
process. For ASSFOA-GRNN model, the R2 value is 0.9994, 
RMSE value is 2.58 °C, and MAE value is 1.94 °C.
4.3  Computational efficiency analysis of machine learning 

model

Table 6 shows the computational time of ASSFOA-GRNN 
model and FE simulation. To establish the training dataset, a 
total of 42 group FE simulations were conducted with each 
simulation duration of approximately 1.2 h. Thus, the total 
time required to establish the training dataset is approximately 
50.4 h. The training time for ASSFOA-GRNN model is 

Table 4  Prediction results of temperature-time distribution

No.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

Point A

RMSE/℃

3.07

2.27

1.75

2.74

2.21

1.83

3.59

1.79

2.81

1.78

2.09

1.74

3.25

2.57

1.75

2.51

3.36

2.49

MAE/℃

2.10

1.77

1.42

1.81

1.56

1.28

2.43

1.37

1.84

1.24

1.73

1.37

2.30

1.82

1.36

1.89

2.32

1.78

R2

0.9972

0.9991

0.9983

0.9971

0.9988

0.9982

0.9989

0.9993

0.9974

0.9980

0.9995

0.9977

0.9989

0.9978

0.9991

0.9977

0.9981

0.9988

Point B

RMSE/℃

1.58

2.84

2.67

3.55

1.61

3.11

2.30

1.64

1.87

2.90

1.88

3.76

2.16

3.71

2.78

1.68

2.89

3.82

MAE/℃

1.27

2.18

1.98

2.73

1.17

2.12

1.74

1.26

1.32

2.04

1.50

2.47

1.62

3.04

2.05

1.38

2.16

3.15

R2

0.9978

0.9973

0.9986

0.9987

0.9994

0.9988

0.9990

0.9977

0.9986

0.9991

0.9987

0.9973

0.9992

0.9982

0.9975

0.9984

0.9991

0.9972

Point C

RMSE/℃

1.80

2.34

2.03

1.53

3.63

2.55

1.55

2.93

1.99

3.47

3.02

2.69

2.07

1.59

3.41

3.14

1.66

2.63

MAE/℃

1.36

1.90

1.55

1.02

3.03

1.78

1.21

2.03

1.36

2.34

2.24

1.92

1.54

1.26

2.26

2.17

1.31

1.77

R2

0.9986

0.9979

0.9974

0.9978

0.9981

0.9993

0.9971

0.9990

0.9989

0.9975

0.9992

0.9984

0.9976

0.9989

0.9983

0.9990

0.9978

0.9992

Point D

RMSE/℃

2.14

3.34

1.66

2.19

1.96

1.92

3.18

2.46

2.97

3.60

2.42

1.95

2.38

2.72

3.23

2.23

1.71

1.88

MAE/℃

1.67

2.26

1.34

1.57

1.44

1.38

2.16

1.68

1.98

2.32

1.88

1.46

1.72

1.99

2.59

1.77

1.29

1.49

R2

0.9980

0.9984

0.9992

0.9994

0.9976

0.9985

0.9973

0.9975

0.9980

0.9983

0.9979

0.9994

0.9981

0.9985

0.9980

0.9971

0.9994

0.9990
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approximately 2.8 h. After training, the model can predict the 
temperature in only 10 s, greatly improving the computational 
efficiency by a factor of 432 compared to FE simulation. 
Since the training of the ASSFOA-GRNN model relies on the 

database established through FE simulations, ASSFOA-
GRNN model does not show a significant advantage over FE 
simulations when making temperature predictions for small 
batches. However, when large batches of temperature fields 
for uncertainty quantification or process parameter 
optimization are required, the application of ASSFOA-GRNN 
model can significantly improve computational efficiency.
4.4  Comparison of predictive performance with other 

models 
To further evaluate the prediction performance of ASSFOA-

GRNN model, the prediction results of different machine 
learning models, including back-propagation neural network 
(BPNN) model, GRNN model, and FOA-GRNN model, were 
compared with those of ASSFOA-GRNN model on the test 
dataset. The parameters for all models were set to their 
optimal values. BPNN model is a multilayer feed-forward 
network model trained by the error back-propagation 
algorithm. Its network structure primarily consists of input, 
hidden, and output layers. The pertinent parameters of BPNN 
model are as follows. The maximum number of iterations was 
5000, the learning rate was 0.01, the minimum error for the 
training objective was 0.000 01, and the number of hidden 
layers was 8. The smoothing factor of GRNN model was 0.1. 
The pertinent parameters for the FOA-GRNN model were as 
follows: the fruit fly population size was 100 and the 
maximum number of iterations was 2000.

Table 7 shows the comparison results of the predictive 
performance of different machine learning models. The 

FE simulation a FE simulation b

ASSFOA-GRNN model ASSFOA-GRNN model
c d

Temperature/℃ Temperature/℃

Temperature/℃ Temperature/℃

Fig.12  Comparison of temperature field distributions predicted by FE simulation (a–b) and ASSFOA-GRNN model (c–d) at deposition time of 

50.95 s (a, c) and 80.05 s (b, d) under condition of P=600 W, v=6 mm/s, and f=0.2 g/s

Table 5  Prediction results of temperature-spatial distribution

No.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

t=50.95 s

RMSE/℃

2.29

1.98

1.58

2.40

1.81

2.35

2.74

1.68

1.97

1.75

2.17

1.51

2.46

2.03

1.63

1.97

2.61

1.66

MAE/℃

1.75

1.47

1.22

1.85

1.37

1.68

1.92

1.31

1.43

1.42

1.54

1.14

1.97

1.50

1.24

1.43

1.86

1.24

R2

0.9990

0.9982

0.9977

0.9980

0.9979

0.9978

0.9995

0.9988

0.9992

0.9983

0.9978

0.9989

0.9993

0.9977

0.9990

0.9987

0.9989

0.9978

t=80.05 s

RMSE/℃

1.73

1.86

2.96

2.58

2.06

1.79

1.90

2.84

2.77

1.40

2.66

2.55

1.37

2.31

1.84

1.35

1.49

2.24

MAE/℃

1.36

1.40

2.18

2.08

1.63

1.34

1.56

2.04

2.13

1.02

1.96

1.99

1.06

1.83

1.36

1.04

1.12

1.61

R2

0.9979

0.9986

0.9984

0.9993

0.9976

0.9983

0.9977

0.9996

0.9978

0.9991

0.9985

0.9981

0.9976

0.9994

0.9982

0.9992

0.9976

0.9986

Table 6  Comparison of computational time between ASSFOA-GRNN model and FE simulation

Method

ASSFOA-GRNN model

FE simulation

Time to establish the training dataset/h

50.4

-

Training time/h

2.8

-

Time to calculate a single temperature field

10 s

1.2 h
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evaluation metrics for the models include RMSE, MAE, R2, 
training time, and prediction time. It can be seen that the 
RMSE and MAE values of GRNN model are significantly 
smaller than those of BPNN model, and the R2 is notably 
better. This indicates that the prediction accuracy of GRNN 
model is higher than that of BPNN model. This is because 
BPNN model uses the gradient descent method to update the 
weights, which can easily lead to local minima and prevent 
the model from finding the global optimal solution. Therefore, 
using GRNN model in this study for temperature prediction is 
reasonable. Compared with those of GRNN model, the RMSE 
and MAE values of FOA-GRNN model are reduced: RMSE 
decreases by 40.65% and MAE decreases by 39.13%. The R2 
value of FOA-GRNN model is slightly better than that of 
GRNN model and significantly better than that of BPNN 
model. This result indicates that although the unoptimized 
GRNN model has strong fitting ability, its predictive 
performance is restricted. Compared with that of FOA-
GRNN, GRNN, and BPNN models, RMSE value of ASSFOA-
GRNN model reduces by 81.04%, 88.75%, and 93.29%, 
respectively. Compared with that of FOA-GRNN, GRNN, and 
BPNN models, MAE value reduces by 80.26%, 87.99%, and 
93.50%, respectively. Meanwhile, the R2 increases by 9.44%, 
14.70%, and 61.01%, compared with that of FOA-GRNN, 
GRNN, and BPNN models, respectively. These improvements 
all demonstrate that ASSFOA-GRNN model outperforms the 
other models in terms of prediction accuracy.

In addition to prediction accuracy, prediction efficiency is 
another critical metric for evaluating algorithms. The predic-
tion efficiency of BPNN model is significantly lower than that 
of GRNN model. This is because GRNN model requires fewer 
parameters to be preset and eliminates the complex backpro-
pagation process. The prediction efficiency of FOA-GRNN 
model is significantly improved compared with that of GRNN 
model because FOA can quickly find the optimal smoothing 
factor with fewer iterations. The slight decrease in prediction 
efficiency of ASSFOA-GRNN model, compared with that of 
the FOA-GRNN model, is due to the additional computational 
steps required by the mutation and crossover operations in-
troduced in FOA, which increase the algorithm 􀆳 s compu-
tational complexity. Based on the abovementioned discus-
sion, the ASSFOA-GRNN model achieves the optimal results 
in terms of RMSE, MAE, and R2 metrics. Although its 
prediction efficiency is slightly lower than that of FOA-
GRNN model, its prediction accuracy far exceeds that of the 
other models. Considering the trade-off between prediction 

accuracy and efficiency, ASSFOA-GRNN model demonstrates 
the optimal overall performance among these four temperature 
prediction models.

55  Conclusions  Conclusions

1) The temperature profile simulated by FE model is highly 
consistent with the actual measured temperature profile, 
achieving an accuracy of 95.52%. The model error is within 
an acceptable range. Consequently, the data generated by FE 
simulation can serve as a dataset for training machine learning 
models.

2) ASSFOA-GRNN temperature prediction model can 
accurately predict the temperature during LDED process, 
achieving very high accuracy. The R2 value is 0.9994, RMSE 
value is 2.58 °C, and MAE value is 1.94 °C. The training time 
for the model is approximately 2.8 h, and only 10 s is required 
to make a quick temperature prediction after training.

3) ASSFOA-GRNN model is compared with BPNN, 
GRNN, and FOA-GRNN models. The results indicate that the 
ASSFOA-GRNN model achieves the highest prediction 
accuracy among all the compared models. In terms of 
prediction efficiency, the ASSFOA-GRNN model outperforms 
both the GRNN and BPNN models, though it is slightly less 
efficient than the FOA-GRNN model.

4) Overall, ASSFOA-GRNN model in this study performs 
excellently in temperature prediction. It not only significantly 
improves prediction efficiency while ensuring accuracy, but 
also demonstrates high practicality and application potential, 
making it highly significant for temperature prediction in 
LDED process.
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基于ASSFOA-GRNN模型的激光定向能量沉积温度预测

李殿起 1，柴媛欣 1，苗立国 1，唐敬虎 2

(1. 沈阳工业大学  机械工程学院，辽宁  沈阳  110870)

(2. 东北大学  机械工程与自动化学院，辽宁  沈阳  110819)

摘 要：针对传统的激光定向能量沉积（LDED）温度预测方法精度低、耗时长、成本高等问题，提出了一种结合数值模拟的机器学习

模型来预测LDED过程中的温度。建立了有限元（FE）热分析模型，通过原位监测实验验证了模型的准确性，并基于FE模拟获得了预

测模型的基础数据库。利用广义回归神经网络（GRNN）进行温度预测。为了减少GRNN调参过程中对人为经验的依赖并提升模型预测

性能，引入了改进的自适应步长果蝇优化算法（ASSFOA）。最后将ASSFOA-GRNN模型与BPNN模型、GRNN模型和FOA-GRNN模型

的预测性能进行了比较，评价指标包括均方根误差（RMSE）、平均绝对误差（MAE）、决定系数（R2）、训练时间和预测时间。结果表

明，ASSFOA-GRNN模型在RMSE、MAE和R2指标上均表现最佳，尽管其预测效率略低于FOA-GRNN模型，但预测精度显著优于其他

对比模型。本研究方法可用于LDED工艺的温度预测，也为同类方法的应用提供了借鉴。

关键词：激光定向能量沉积；温度预测；有限元模拟；广义回归神经网络；果蝇优化算法
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