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Fig.1 Phase transformation behaviors of three samples
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Table 1 Phase transformation temperatures of three samples (°C)

Sample CR CA ST
R, - - -5
R, -17
M, 24 -33
M, —65 =55
A, 48 34 -25
A 0 0 22
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Microstructure Evolution of Superelasticity and Elastocaloric Cooling Effect in NiTi Alloy

Pang Guoxin', He Zhubin®, Lin Yanli’, Zu Yufei', Li Xifeng’, Fu Xuesong', Zhou Wenlong', Chen Guoqing'
(1. Key Laboratory of Solidification Control and Digital Preparation Technology (Liaoning Province), School of Materials Science and
Engineering, Dalian University of Technology, Dalian 116085, China)
(2. School of Mechanical Engineering, Dalian University of Technology, Dalian 116024, China)
(3. Institute of Forming Technology & Equipment, School of Materials Science and Engineering,
Shanghai Jiao Tong University, Shanghai 200030, China)

Abstract: By conducting adiabatic cyclic loading tests on three types of NiTi alloys with different martensite contents, dislocation densities, and
grain sizes, the intrinsic influence mechanisms of different microstructures on the superelasticity, deformation modes, and elastocaloric cooling
effect during the deformation process of NiTi alloys were investigated. The results show that the presence of a high dislocation density, high
martensite content, and small grain size can reduce the degree of superelastic functional degradation and the possibility of local uneven
deformation in NiTi alloys. However, the elastocaloric cooling ability is weak. A smaller strain value results in superior superelasticity (minimum
€

=0.23%), but inferior elastocaloric cooling ability (maximum A7

cooling

=0.63 K). Completely eliminating dislocations and martensite, as well

residual

as increasing grain size, can achieve a significant elastocaloric cooling capacity (AT

cooling

=25 K), but induces severe functional degradation (a drop
from 25 K to 9.6 K, a decrease of 61.6%). Annealing at 400 °C for 15 min to tailor the dislocation density, martensite content and grain size results

in good superelasticity, uniform deformation ability and a considerable elastocaloric cooling ability (A T,

cooling

=7.2 K), along with improved
resistance to functional degradation.
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