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Table 1 Parameters of calculate model

Parameter Value

Sample size 11.42 nmx11.42 nmx31.41 nm

a-Fe lattice constant, a,/nm 0.2855

Number of Fe atoms in tensile
i 320 000
deformation zone

Void position/nm (5.71,5.71, 15.71)
. . 0.00, 0.25, 0.50,
Void radius/nm
0.75, 1.00
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Fig.1 MD computational model of sample subjected to uniaxial

tension: (a) coordinate and geometry sizes and (b) MD

computational model
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Fig.2 Stress-strain curves of o -Fe with void of different radii:

(a) sample with perfect lattice and (b) samples with voids



+512. W] B RS TR

555 %

G FOARARL, o G TR I g - TR N AR Y 2 T, A
Z W R FE IR 53 4 A B s s AR BB e R L B
ARG AL AN B 24, RN N7 1B 2a A A OA B W AB BXWBC BUI
C 2 Ja, HXFRIAE K 0~0.03 H X [A] BEE AT 2R ML &, 15
3 ¥ FC A 2 (Young’s modulus) &y 241.38 GPa, b 4l 8k %
WS 56 R 15 2 1 A7 IR 211 GPa™ K 14.40%, 4%
PR B2 1 i K 11 Ji DR L0 5L 20 i A F 9 o iR ™, o
SEANTEREIR o ax S s PR A5 R W, AR 9 TR
(1) MID RS0 7772 rTAT 1, T A h R 20

FH P 2b FITR AN [FI LI 242 R R 6 B g - AR i 2%
AT Bl FLIR 242 R 38 K, ARE 1R 9L 7 - AR it 2 5
KA EAA, ML RN 0.25 nm B R FELE JE iR
J S P 0B e R B B AR R A B L 3 LI AR
A48 R ClnFLAR 242 4 531024 0.50.,.0.75 F11.00 nm) , J1°F-
B NARTEAL Y B, LA i AR Bt Rt , B B FLIR
e 47 1 18 K, IO AR A Ak BB T Ok, M JE AR B
/N
3.2 P a-Feik 1 F M AERU RN

[F 4 % B 2 T 78 AR A 0~0.03 ) [X i) B AT 26 1
G, 15 25 R 17 PO SR E i AR s 1
Jer HRINE 77 5 BUSE 7 2 B R B i ) e RABLAE R PR 5, 5
20T L IR AR 52 SR W 3 AR TR SR A R T S A
DL b BT3RS Re HE AR S AL AR 1 28 R 4 Al n
K 3~5 Fios o

FH B 3 ) %, B R 3 I, & FLI a-Fe URE R4 RS
B A A b LR 2 AR i 8 K T RS L X 5 AL
EROLVERPIR S ORI S5 — B tRknT o, B
FLIF 22 38 K IR FE R PU AR T IR ) R SRIEARTC
FRRIE FEH , FLIR ZE B A LR AL R AR 5 AR, ok
AR IR & R ma AR /N, a0 LI 2= 4% 4 1.00 nm 1)
a-Fe iR BEI M FC R 240.69 GPa, 1Y b B AE 10 RE 1 U6k
/NT 0.29%.

FH P 4w i, R 11 e IR L A7 A8 B 5 LR 2= 45 11 1
K/, Bk B edEx R, fLIAE4%8 1.00 nm

242
<
=¥
9
: .
]
S 2u1f =
% |
g
> E=24150-0.66R, ;4

240 : : :

000 025 050 075  1.00

Radius/nm

K3 R 5 LIRS R 0%

Fig.3 Relationship between Young’s modulus and void radius
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Table 2 Mechanical properties of a-Fe samples with voids of different radii

Void radius/nm

Mechanical property index

0.00 0.25 0.50 0.75 1.00
Young’s modulus/GPa 241.38 241.38 241.29 241.10 240.69

Loss of Young’s modulus/% 0 0 —0.04 —0.12 -0.29
Yield stress/GPa 13.36 13.33 12.90 12.50 12.07

Loss of yield stress//% 0 -0.22 -3.44 —6.46 -9.66
Ultimate tensile strength/GPa 15.08 13.67 11.52 10.95 11.20
Loss of ultimate tensile strength/% 0 -9.35 -23.61 -27.39 —25.73
Critical strain 0.2842 0.2589 0.1162 0.0890 0.0763
Loss of critical strain/% 0 -8.90 -59.11 —68.68 -73.15

Note: mechanical property loss=[(value of the sample with void defects—value of the ideal sample)/value of the ideal sample]x100%
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Fig.6 Crystal structures of a-Fe samples with voids under different tensile strains (blue represents the bee atoms, green represents the fcc atoms,

magenta represents the hcp atoms, white represents the boundary or disordered atoms, and black represents the fixed-end atoms; the same

below): (a) the sample with void radius of 0.25 nm and (b) the sample with void radius of 1.00 nm
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Fig.8 Local diagrams of dislocations formed in a-Fe sample with void defect: (a) sample with void radius of 0.25 nm and (b) sample with void

radius of 1.00 nm
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Fig.9 Evolution of void defect at different tensile strains (sample with an initial void radius of 1.00 nm)
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Molecular Dynamics Simulation of the Effects of Void Defect on the
Tensile Deformation Behavior of a-Fe
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(1. Key Laboratory of Testing Technology for Manufacturing Process, Ministry of Education,
Southwest University of Science and Technology, Mianyang 621010, China)
(2. Institute of Systems Engineering, China Academy of Engineering Physics, Mianyang 621999, China)
(3. School of Civil Engineering and Architecture, Southwest University of Science and Technology, Mianyang 621010, China)

Abstract: To further investigate the effects of void defect on the plastic deformation behavior of a-Fe under tensile load, the molecular dynamic
models of the a-Fe samples with the void defects were established and related simulations under uniaxial tension were carried out for a series of
models. The results show that overall, the deterioration of tensile mechanical properties of the sample with void is positively related to the void
size. The larger the void size, the easier the occurrence of plastic deformation stage for sample. Overall, the Young’s modulus, yield stress,
ultimate tensile strength and tensile elongation of the samples containing void decrease with increasing the radius of void. The plastic deformation
mechanism is of a mixture of the tensile stress-induced structural phase transition and the dislocation slip. However, the characteristics of stress-
strain curves change significantly with increasing the radius of void, the plastic yield stage and strain hardening stage of the sample become
shorter, and the strain hardening stage even vanishes. The research deepens the understanding of the effects of void defect on the mechanical
properties and plastic deformation mechanisms of metals and lays a useful foundation for the subsequent analysis and study of the physical and
mechanical properties of polycrystalline a-Fe materials under various conditions.
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