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Abstract: The key parameters that characterize the morphological quality of multi-layer and multi-pass metal laser deposited parts are
the surface roughness and the error between the actual printing height and the theoretical model height. The Taguchi method was
employed to establish the correlations between process parameter combinations and multi-objective characterization of metal
deposition morphology (height error and roughness). Results show that using the signal-to-noise ratio and grey relational analysis, the
optimal parameter combination for multi-layer and multi-pass deposition is determined as follows: laser power of 800 W, powder
feeding rate of 0.3 r/min, step distance of 1.6 mm, and scanning speed of 20 mm/s. Subsequently, a Genetic Bayesian-back
propagation (GB-BP) network is constructed to predict multi-objective responses. Compared with the traditional back propagation
network, the GB-back propagation network improves the prediction accuracy of height error and surface roughness by 43.14% and
71.43%, respectively. This network can accurately predict the multi-objective characterization of morphological quality of multi-layer

and multi-pass metal deposited parts.
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1 Introduction

Laser-directed energy deposition (LDED) is a specific
additive manufacturing technique that employs precise
process parameters to produce solid workpieces. It enables
surface modification of workpieces through a specialized
cladding layer, enhancing their resistance to high-temperature
wear and corrosion. Due to its inherent characteristics, such as
high energy density, high efficiency, high design freedom,
rapid fabrication speed, and exceptional physical and
mechanical properties, LDED 1is extensively applied in
aerospace!!, medical equipment”, and the manufacturing of
other large-sized components™. Metal powder is the
commonly used raw material in this process, in which a
nozzle injects the powder into the molten pool under the
action of a carrier gas, which then cools and solidifies.

With the rapid development of laser cladding technology',
there has been an increasing demand for higher surface
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forming quality of workpieces, while the tolerance for shape
and size deviations in multi-layer and multi-pass cladding
processes has become more stringent.

The laser cladding process involves various parameters,
including laser spot diameter, laser power, powder-feeding
rate, scanning speed, overlap rate, shielding gas flow rate, and
powder-feeding gas flow rate. Different parameter
combinations affect the forming quality of the cladded

571 Extensive research has been conducted on the

parts
influence of single-layer cladding processes on cladding
height, width, and depth™, as well as the influence of process
design on properties such as strength, hardness, high-
temperature resistance, and corrosion resistance of the
cladding layer” ", Numerous experimental verifications have
been employed to analyze how different process parameters
affect the single-layer cladding"”. The Taguchi method,
response surface methodology, and grey relational analysis are
commonly used for parameter optimization and response
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prediction' Marzban et al"™ conducted orthogonal
experiments and found the optimal solution by combining
principal component analysis with the technique for order
preference by similarity to ideal solution. Deng et al!'¥
combined the Taguchi method with grey relational analysis to
optimize the multi-objective response parameters of TiC
particle-reinforced iron-based composite cladding layers
prepared by preset powder laser cladding. Mondal et al!”
conducted orthogonal experiments to study the effects of laser
power, scanning speed, and powder-feeding rate on cladding
layer quality on AISI1040 steel substrates, and proposed a
multi-objective response approach using grey relational
analysis to determine optimal process parameters. Quazi et
al"¥ adopted the Taguchi optimization method and used signal-
to-noise ratio (SNR) response analysis and Pareto analysis of
variance to analyze results. Experimental validation of the
optimized parameter combination revealed significant
improvements in surface hardness and roughness of the
AA5083 cladding layer. Yu et al"™ used the Taguchi grey
relational method to optimize the process parameters for laser
cladding of Fe313, with cladding width, height, and dilution
rate selected as response targets. Their findings demonstrated
that the exhibits

morphology and structure compared to the unoptimized layer.

optimized cladding layer improved
Lian et al® designed a Taguchi experiment to study the
effects of process parameters on the microhardness and wear
volume of the cladding layer, aiming to improve its
performance. The grey relational analysis method was used to
determine the optimal process parameters and predict their
grey relational grade (GRG). The results showed that the
average error between the predicted and experimental results
was 5.3%. Lee et al® investigated the impact of process
parameters on the geometry of single-pass laser cladding
layers of AISI M4 and employed response surface
methodology to establish a mathematical model for predicting
and controlling the layer geometry. Alam et al® employed the
central composite response surface methodology to design
orthogonal experiments, focusing on the influence of selected
process parameters on the geometry and hardness of single-
pass laser cladding layers of AISI 420 metal powder. A
multivariate regression model was also established to predict
the hardness of cladding layer, the aspect ratio of weld bead,
and the wetting angle of substrate. Bhardwaj et al® studied
the influence of process parameters (laser power, scanning
speed, and powder feeding rate) on the geometric properties of
cladding layers, especially the dilution rate, based on the
response surface method and variance analysis. The mapping
relationship between parameters and geometric properties was
established by regression modeling to find the optimal
experimental parameters.

In addition to the aforementioned traditional methods,
machine learning and artificial neural networks, especially
back propagation (BP) neural networks, have been widely
used in laser cladding for process parameter optimization and
multi-objective response prediction™ ", Li et al”*? developed
a BP neural network to predict the influence of process

parameters on dilution rate, and its prediction error was
5.89%. However, this model is highly dependent on the
dataset size and tends to fall into local minima when the
number of samples is intelligence
algorithm, such as genetic algorithm (GA) ™", have strong
global optimization capabilities. Therefore, many scholars

restricted. Swarm

have proposed combining GA with BP networks to solve
problems such as slow GA convergence and susceptibility to
local minima, thereby achieving fast and accurate global

optimization. Ilanlou et al®

performed a full factorial
experiment to investigate the influence of process parameters
on the geometric characteristics of Inconel 718 rails. They
predicted the geometric characteristics of the cladding layer
through linear regression and GA under different parameter

combinations. Yang et al®”

integrated BP neural networks
with GA to establish a prediction model that links process
parameters to the surface morphology quality of laser
cladding layers, and verified the prediction accuracy of the
model through experiments. Liu et al® established a GA-BP
neural network, using laser power, scanning speed, and
powder thickness as process parameters. They conducted a
full factorial experiment to generate a dataset and predicted
the geometric characteristics of single-layer and single-pass
cladding layers produced by a high-power semiconductor
laser. Yu et al® designed an orthogonal experiment with
overlap rate, powder feeding rate, and scanning speed as
process parameters, and established a neural network model to
predict the crack density of high-hardness nickel-based laser
cladding layers. The results were optimized using GA, and the
reliability of model was validated through experiments. Deng
et al® designed a Taguchi experiment and used the SNR and
variance analysis method to analyze the effects of laser power,
spot diameter, overlap rate, and scanning speed on the micro-
hardness of Ti(C, N) ceramic cladding layers. Furthermore, a
BP neural network combined with a quantum particle swarm
optimization algorithm was employed to establish a mapping
relationship between process parameters and responses for
accurate prediction. Wang et al”” developed a powder-scale
multi-physics model, which incorporated mass transfer, phase
change, and heat transfer during the LDED process to predict
the geometric characteristics of single-layer and single-pass
cladding tracks. In addition, a Gaussian regression model was
also established to predict the geometry of cladding tracks
under various parameter combinations.

Existing parameter optimization methods for LDED
primarily focus on single-layer single-pass or single-layer
multi-pass cladding, with few research on multi-layer and
multi-pass cladding. However, due to the heat accumulation
between layers, the manufacturing accuracy of multi-layer and
multi-pass cladding is more sensitive to process parameters.
Furthermore, when orthogonal tests involve many factors, it is
difficult to determine the variation pattern in the experimental
data. The optimal result is usually a combination of
parameters, which can not only accurately predict the height
error and surface roughness but also obtain the optimal
process parameters.
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In this study, the Taguchi method was used to design
orthogonal experiments, and the SNR of multi-objective
responses was analyzed. Additionally, the grey relational
analysis method was used to predict the optimal parameters
for multi-layer and multi-pass cladding, aiming to minimize
both the theoretical and actual height error (AH) of the printed
parts and the surface roughness (R,). Experimental verification
was then conducted. Subsequently, a GB-BP network was
constructed to predict multi-objective responses.

2 Experiment

Fig.1 illustrates the research approach, which includes laser
cladding equipment and a visual inspection system. Point
cloud data were collected to calculate the height difference
and surface roughness of the printed parts. A hybrid approach
employing the Taguchi method and grey relational analysis
was used to identify the optimal parameter combination.
Furthermore, a GB-BP network model was constructed for
multi-objective response prediction.

2.1 Materials and equipment

The printing equipment includes an optical platform, a
three-axis motion system, a control console, a powder feeder,
a laser, a powder feeder barrel, a water cooler, and a structured
light camera. The structured light camera projects a custom-
designed pattern onto the surface of the three-dimensional
object while utilizing an integrated camera to capture the
image distortion on the physical surface.

The substrate used in the experiment was 316 stainless steel
of 100 mmx100 mmx8 mm. The
experiments used gas-atomized 316L powder (Carpenter

with dimensions

Structured light
camera

Additive) with a particle size of 53—120 pm. 316L powder
was mainly spherical, with fine satellite particles adhering to
the surface of powder particles. The composition of both the
powder and the substrate was confirmed using energy
dispersive  spectrometer (EDS), and their elemental
composition is presented in Table 1. Before laser cladding, the
metal powders were incubated in a drying oven at 100 °C for
2 h. The dried powder was then loaded into the powder
hopper, ready for deposition onto the substrate via the laser
cladding process. Before deposition, the substrate surface was
cleaned with anhydrous ethanol to remove contaminants.
After drying, the experiment was conducted.

The experiment used a laser cladding system with a
maximum output power of 2000 W. The laser spot diameter
was 2 mm, and high-purity argon was used as the shielding
gas and powder-feeding gas during cladding. After multi-layer
laser cladding, a 3D point cloud model of the component was
acquired using an optical camera to calculate its AH and R,.
Under ideal conditions, the surface coating formed by multi-
pass cladding exhibited a cross-section with relatively regular
convex and concave morphologies. Fig.2 illustrates the profile
curve of this cross-section, and the roughness R, can be
calculated by Eq.(1).

L|Z(x)|dx .
R2=LL=;z|zi| ()

i=1
where z (x) is the longitudinal distance of the section profile;
L is the transverse distance of the section contour; n is the
number of test points; z, is the longitudinal distance of the
cross-section profile of each test point.

grey correlation analysis

H;
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Fig.1 Schematic diagram and flowchart of laser cladding system

The multi-layer and multi-pass laser deposition process
gradually achieved the preparation or repair of complex
structures by the gradual deposition of metal materials in
multiple layers (via repeated superposition) and multiple
passes (each pass follows a different direction). In this
process, the laser beam was focused on the metal surface and

Table 1 Composition of substrate and powder materials (wt%)

Element C Cr Si Ni Mn Mo Fe

Substrate  0.03 17.0 0.5 13.0 0.2 2.0 Bal.

Powder 0.06 18.16 049 805 1.06 0.11 Bal




50 Li Yaguan et al. / Rare Metal Materials and Engineering, 2026, 55(1):47-58

2(x)

Fig.2 Profile curve of ideal coating cross-section

locally heated it to a molten state. The molten metal combined
with the feed powder or wire to form a molten pool. In each
layer, the molten pool followed a predetermined scanning
trajectory, and once a layer was completed, the deposited
molten metal underwent rapid cooling and solidification. The
laser was applied continuously on the new layer to form a
metallurgical bond with the previous layer. This process was
repeated until the target part geometry was achieved. The
repeated cross-scanning characteristics of this process
imposed higher requirements on the scanning path and
direction”. The filling path determined the internal structure
of the printed model, thereby directly affecting the strength
and stability of the prepared object.

The angle setting of linear filling impacts the strength,
appearance, and stability of the printed parts in 3D printing.
The linear filling angle affects the strength of the printed parts
in different directions. Usually, the strength direction of the
printed part is parallel to the direction of the filling path.
Commonly used filling angles are 0°, 45°, 90°, and 135°, and
the filling path at each angle provides different strength
support. For instance, parts filled at 0° and 90° perform well
under lateral and longitudinal pressures, respectively. Filling
angles of 45° and 135° provide balanced support in multiple
directions. Due to the staggered layout of 45° and 135° angles,
they can share strength in multiple directions, generally
yielding more uniform strength compared to horizontal or
vertical filling™. Therefore, this work adopted the second
filling method, as shown in Fig. 3a, and the effect of multi-
layer and multi-pass cladding using this method is shown in
Fig.3b.

2.2 Experimental design

In this study, laser power, powder feeding rate, step
distance, and scanning speed were selected as the key factors
influencing the flatness of the top surface of component. Table
2 lists these four factors and their corresponding levels. A
L,,(4%) Taguchi orthogonal experimental design was adopted,
with the orthogonal array presented in Table 3. Two response
items, AH and R, were selected to evaluate the printing

/ _r____w-‘ b
SANNNNL '
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Fig.3 Schematic diagrams of filling path direction (a) and effect of
multi-layer and multi-pass cladding (b)

Table 2 Process parameters of laser cladding and corresponding

levels
Level
Parameter
1 2 3 4

Laser power, LP/W 800 900 1000 1100

Powder feeding rate, PR/r-min™' 0.3 0.4 0.5 0.6

Step distance, SD/mm 1.0 1.2 1.4 1.6

Scanning speed, SS/mm-s™ 16 18 20 22

Table 3 L, (4%) taguchi orthogonal experimental design

No. LP/W PR/r'min”"! SD/mm SS/mm-s™
1# 900 0.6 1.0 16
2# 1000 0.4 1.2 16
3# 800 0.6 1.2 20
4# 1100 0.3 1.2 18
S# 800 0.5 1.0 18
6t 900 0.5 1.2 22
T# 1000 0.3 1.0 22
8# 1100 0.4 1.0 20
o# 800 0.3 1.4 16
10# 1000 0.5 1.4 20
11# 1100 0.6 14 22
12# 900 0.4 14 18
13# 1100 0.5 1.6 16
14# 900 0.3 1.6 20
15# 1000 0.6 1.6 18
16# 800 0.4 1.6 22

quality, aiming to obtain a multi-layer cladding workpiece
with excellent comprehensive performance.

3 Results and Discussion

3.1 Experiment results

Different combinations of process parameters will result in
different thicknesses of the cladding layer. Therefore, it is
imperative to determine the single-layer cladding thickness
corresponding to each parameter combination before multi-
layer cladding. The 16 sets of parameters in Table 3 were used
for laser cladding, and the single-layer cladding height (H,)
was measured as the benchmark thickness for multi-layer
cladding.

Fig. 4 illustrates the experimental results of cladding a
single layer, and Table 4 provides the thickness of the
cladding layer corresponding to different parameters.

The target heights for 16 parameter combinations were used
as the baselines, and multi-layer cladding was performed
accordingly. The experimental results are shown in Fig.5. Due
to the installation constraints of the measuring equipment, the
maximum achievable printing height in the current can reach
20 mm. Within this range, it is reasonable to use AH to
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Fig.5 16 sets of parameters for multi-layer cladding experiments

characterize the height error. In principle, this method is also
applicable to greater printing thicknesses. Table 5 lists the
measurement results for the two response metrics of all
specimens.

The point cloud model on top layer of printed part was
extracted, and the plane fitting was performed. As shown in
Fig.6, the distance from the plane to the substrate is calculated
as the actual printing height; subtracting this value from the
theoretical height gets the height error. The distance from each
point in the top layer point cloud to the fitted plane is
calculated, and the average of these distances is taken as the
surface roughness of the printed part. During experimental
measurements, high-precision measuring equipment was used
to ensure the accuracy of the measured data. The possible
error range during roughness characterization is attributed to
the measurement error of the equipment, which is less than
0.01 mm.

3.2 Calculation of SNR for each response and Taguchi
analysis

SNR is introduced as an evaluation index. According to
specific requirements, SNR characteristics are divided into
three types: larger, smaller, and nominal values, corresponding
to the target values of maximizing, minimizing, and reaching
or approaching The quality response, respectively. The
calculation formulas for these three types are given in

Eq.(2-4).
— ole] L L
SNR = IOIg(n ;y? ) )
SNR =—101g(’11 yf) 3)
i=1
SNR =—101g[}11 (v - m)z} 4)
i=1

where SNR is the quality characteristic, n is the number of
experiments, m is the experimental target value, and y, is the
experimentally measured data. For the two responses, namely
the AH and R, the goal is to minimize them. Thus, Eq.(3) is
employed to calculate SNRs of these two responses. Table 6
lists SNRs values corresponding to each group of experiments.

The mean SNR values for each level are calculated using
Eq. (5) to assess the effect of different factor levels on the
surface properties of the blade. For a given factor, the factor
level yielding the highest mean SNR is considered the optimal
level.

1 k
in = %Z(SNR[)

where R, is the mean value of the SNR corresponding to each
factor level, SNR, is the SNR containing the associated level,
and 4 is the number of experiments.

Extreme deviation is the difference between the highest and
lowest average response values of SNR of the factor level. It

®)

quantifies the relative impact of different factor levels on
experimental outcomes. The larger the extreme deviation, the
more significant the influence of that factor. Table 7 shows
average SNR value responses of each level for various
aspects. Fig. 7 illustrates the trends of SNR for each factor
along with the two corresponding responses AH and R,. The
SNR analysis reveals that the optimal parameters for mini-
mizing AH and R, are LP1PR1SD3SS4 and LP2PR1SD4SS3,
respectively.

According to the SNR ranking analysis, the influence of
each process parameter on AH of the top layer follows the
order: SS>PR>LP>SD. Among these, SS exerts the most
significant influence on the cladding layer height. If SS is too
slow, the prolonged residence of the laser head in the molten
pool leads to an increased heat transfer to either the substrate
or the preceding cladding layer, resulting in a progressively
higher cladding layer height that surpasses its theoretical
value. Conversely, if SS is excessively high, the nozzle injects
a reduced amount of metal powder into the molten pool,
diminishing the heat transferred to the powder. As a result, the
cladding layer height is less than its theoretical value.
Therefore, selecting an appropriate SS is crucial for
minimizing height errors and improving the quality of printed
part.

According to the SNR ranking analysis, the influence of

Table 4 H, of cladding layer corresponding to different parameter combinations (mm)

No. 1# 2# 3# A# S# 6# T#

8#

o# 10# 114# 12# 13# 14# 15# 16#

H, 097 0.71 0.82 1.22 1.48 132 038

0.73

039 057 070 0.61 035 050 045 0.18
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Table 5 Measurement results of AH and R, for multi-layer

cladding (mm)

No. AH R,
1# 2.3442 0.3145
24 1.0478 0.2003
3# 0.8859 0.1395
4# 3.7846 0.1372
S# 3.4965 0.2191
(3 3.5757 0.1538
TH# 1.1789 0.1130
8# 0.5584 0.2102
Ot 0.9551 0.0825
10# 1.4096 0.1104
11# 1.4056 0.1369
12# 0.8691 0.1128
13# 2.8770 0.1309
144# 0.0343 0.0974
15# 2.7508 0.1331
16# 1.8251 0.0850

Fig.6 Results of the top layer plane fitting of the printed part

Table 6 SNR of response targets (mm)

No. AH R,
1# ~7.400 10.046
214 ~0.406 13.964
34 1.052 17.110
4# ~11.560 17.252
54 -10.873 13.187
6# -11.067 16.261
7# ~1.430 18.938
8# 5.061 13.549
o# 0.440 21.670
104 -2.982 19.138
11# -2.957 17271
124 1.219 18.952
13# -9.179 17.660
144 29.294 20.227
154 -8.789 17.517
16# -5.226 21.414

each process parameter on R, of the top layer follows the
order: SD>PR>SS>LP. The roughness of the top surface is
mainly affected by the overlap ratio, which is characterized by
selected SD in this research. When SD is excessively small,
the overlapping area between adjacent cladding layers
increases. This may cause excessive material accumulation in
a specific area, resulting in protrusions or waviness on the
surface and thus increasing the surface roughness. In addition,
the heat is concentrated in the overlapping area, which may
cause thermal deformation or burning of the cladding
material. These phenomena may induce microcracks or
defects, further increasing the surface roughness. When SD is
excessively large, as the cladding material fails to fully cover
the area, insufficient overlap between cladding layers can lead
to incomplete local fusion, forming weak zones and an uneven
surface, thereby increasing roughness. Moreover, insufficient
overlap may diminish the bonding strength between cladding
layers, making them prone to peeling or flaking, and thus
affecting the overall surface flatness. This is consistent with
the conclusions of Ref.[36]. Thus, choosing a suitable SD and
corresponding overlap ratio is critical for smoothing surface
irregularities of the workpiece and significantly reducing its
roughness.

3.3 Multi-objective

analysis

optimization by grey relational

The Taguchi method is a single-objective response
optimization method, while this research aims to optimize two
objectives simultaneously. Therefore, the grey relational
theory is introduced for multi-objective optimization to
determine the optimal laser cladding parameters. The grey
relational theory effectively integrates multiple targets into a
single objective by converting individual responses into
GRG"",

Grey relational analysis requires a series of calculations”™,
The first step is data normalization. Since the numerical range
and unit of each response are different, normalization is
necessary. Eq.(6) is used for this normalization, scaling the
data to the range between 0 and 1, and its scale remains
unchanged. The normalized results are shown in Table 8.

Y,(k) - min[Y,(k)] 6
max[Yi(k)]*min[Y,.(k)] ©
where [Y(k)] is the SNR for the response k (k=1, 2) of
experiment 7 (i=1, 2, ..., 16); max [Y/(k)] and min [Y(k)] are the
maximum and minimum values of the response & among all

X (k) =

16 experiments, respectively; X (k) is the normalized value of
the experiment i and response k.

Then, the grey relational coefficient (GRC) is calculated by
Eq.(7)"".
min,|x? - X, (k) |+ Emax|x! - X, (k)|
X0 = X, (k)| + ¢max|x! - X, (k)|
where GRC/(k) is the GRC for the response k (k=1, 2) of
experiment i (i=1, 2, .., 16); x) is the ideal value of

GRC, (k) = %

experiment i (i=1, 2, ..., 16) and x’=1 in this work; ¢ is the
distinguishing coefficient over the range of 0<¢<I1. In this
study, & is set to 0.5 by comprehensively considering the
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Table 7 Responses of SNR for AH and R, (mm)

AH R
Level .
LP PR SD SS LP PR SD SS

1 -3.66 4.17 -3.66 -4.15 18.35 19.52 13.93 15.83

2 3.01 0.16 -5.49 -7.50 16.37 16.97 16.15 16.73

3 -3.40 -8.52 -1.08 8.11 17.39 16.56 19.26 17.51

4 -4.66 -4.52 1.53 -5.17 16.43 15.49 19.20 18.47
Delta 7.67 12.70 7.02 15.61 1.97 4.04 5.33 2.64
Rank 3 2 4 4 2 1 3

a the ideal values, where the ideal values are uniformly set to

E St 1000. Finally, the integrated GRG calculation is achieved
5 using Eq.(8)"".
% ‘ GRG.:liGRC.(k) ®)
g o [
§ o where GRG, is the GRG of experiment i (i=1, 2, ..., 16), n is

ol L L L the number of the responses, and #=2 in this work. Eq.(8) can

800 1000 03 0.5 1.0 1.4 1620 equally weigh the importance of AH and R,.

20r . b GRC and correlation levels for each process parameter are
QE’ . - . calculated, as shown in Table 9. To obtain a parameter com-
& 18 \ ) / bination that ensures good printing quality, the Taguchi me-
Zzi 7 \ . . /-/ thod is integrated into the grey relational analysis. Fig.8 shows
g 1o \ ) the main effect plot of GRG. According to the analysis, the
= / optimal process parameter combination is LP1PR1SD3SS3;

r : LP is 800 W, PR is 0.3 t/min, SD is 1.6 mm, and SS is

800 1000 03 05 10 14 16 20 20 mmys.
LP/W PR/r-min’' SD/mm SS/mm-s™

Fig.7 Main effect plots for the SNR analysis of responses: (a) AH
and (b) R,

Table 8 Normalized SNR value of response targets (mm)

No. AH R,
1# 0.102 0.000
24 0273 0337
34 0.309 0.608
44 0.000 0.620
S# 0.017 0270
6# 0.012 0.535
7# 0.248 0.761
8# 0.407 0301
o4 0.293 1.000
10# 0210 0.782
11# 0211 0.622
12# 0313 0.766
13# 0.058 0.655
14# 1.000 0.876
154 0.068 0.643
16# 0.155 0.978

analytic effect and result stability!”. GRC characterizes the
relationship between the actual normalized SNR values and

In addition, Table 10 shows the importance ranking of
factors with respect to the GRG, which follows the order:
SD>PR>SS>LP. SD plays a leading role in influencing both
the height error and roughness.

3.4 Experimental verification of optimal parameters

An additional verification experiment is necessary since the

Table 9 Grey relational analysis data for responses

No. GRC GRG
AH R, Value Rank
1# 0.358 0.333 0.345 16
2# 0.408 0.430 0.419 14
3# 0.420 0.560 0.490 7
44 0.333 0.568 0.451 11
S# 0.337 0.407 0.372 15
o# 0.336 0.518 0.427 13
T# 0.399 0.680 0.540 6
8# 0.457 0417 0.437 12
o# 0.414 1.000 0.707 2
10# 0.388 0.679 0.542 5
11# 0.388 0.569 0.478 8
12# 0.421 0.681 0.551 4
13# 0.347 0.592 0.469 9
14# 1.000 0.801 0.814 1
15# 0.349 0.583 0.466 10
16# 0.372 0.958 0.665 3
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Fig.8 Main effect plots for the SNR analysis of GRG
Table 10 Responses for SNR of GRG
Level LP PR SD SS
1 0.559 0.628 0.424 0.485
2 0.534 0.518 0.447 0.460
3 0.492 0.453 0.570 0.571
4 0.459 0.448 0.604 0.528
Delta 1.434 2.846 2.958 1.707
Rank 4 2 1 3

optimal parameter combination is not involved in the L, (4%
orthogonal array. Eq.(9)" can predict the GRG.

GRG, = GRG,, + i(GRGj -~ GRG,,) )
j=1

where GRG,, is the mean value of total GRG; # is the number
of process parameter and n=4 in this work; GRG; is the mean
value of all GRG for processing parameter j (j =1, 2, 3, 4) at
its optimal level; GRG, is the predicted GRG at the selected
level.

With the optimal process parameters, the GRG, is 0.828.
Comparing the results of the single-target response for AH and
R, with the grey relational analysis results, it can be seen that
the predicted results of GRG,_
lated GRG,,, exhibit consistent trends in magnitude, as shown
in Table 11. This further confirms that the parameters obtained

and the experimentally calcu-

by the multi-target grey relational analysis are optimal.

3.5 Multi-objective prediction based on GB-BP network
Due to the complexity of the metal LDED process and the

inherent variability in product requirements, it is not advisable

to conduct individual experiments. Instead, a mapping

relationship between process parameter combinations and

Table 11 Comparison of single-target response and multi-target

response results

Parameter AH R, AH+R,
LP/W 800 900 800
PR/r-min”" 0.3 0.3 0.3
SD/mm 1.4 1.6 1.6
SS/mm-s™' 22 20 20
GRGy,, 0.719 0.721 0.807
GRG 0.751 0.804 0.828

Pre

responses should be established based on a few samples.
Artificial neural network (ANN) is a computational model
miming biological neural networks®™. Its architecture
typically contains an input layer responsible for receiving
input data, multiple hidden layers that process and extract
features from the input data, and an output layer that generates
the final result. The BP network is the most widely used ANN
model™. It employs BP algorithm to optimize the weights and
biases of network, thereby improving the accuracy of model.
The structural diagram of the BP network is shown in Fig.9.
This method establishes the correlation between input process
parameters (LD, PR, SD, and SS) and output parameters (R,
and AH).

The appropriate number of neurons enhances the prediction
accuracy of network. Bayesian optimization (BO) is employed
to determine the optimal configuration, including hidden
layers, neurons, and network learning rate™'. BO constructs a
Gaussian process probability model to represent the possible
distribution of the objective function.

The model is updated by randomly selecting a set of points
for evaluation. Therefore, new evaluation points are identified
and added to the model for iterative refinement. This process
is repeated until either the maximum number of iterations is
reached or a predetermined level of accuracy is converged
upon. The parameters of the selected BP network are shown in
Table 12. The initial 14 datasets from Table 5 serve as the
training set, and the last two datasets constitute the testing set.
The root mean square error (RMSE) is used to evaluate the
network performance, as shown in Eq.(10).
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Input layer Output layer

Fig.9 Topology diagram of BP network

Table 12 Parameters of BP network

Parameter Value
Activation function Sigmoid
Optimizer Adam
Epoch 600
Learning rate 0.027
Number of hidden layers 2
Number of nodes in the first hidden layer 10

Number of nodes in the second hidden layer 6
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< 2
RMSE = /;;(Y,. Y,) (10)
where 7 is the number of samples, Y, is the ground truth for
each data set, and )A’l. is the predicted output of the network.

Fig. 10 illustrates the loss function curve. The relative
prediction errors for AH and R, are calculated to be 51% and
21%, respectively, as shown in Table 13. The relative error for
AH is higher than 50%, indicating that its prediction
performance is not ideal. The BP network is likely to get
trapped under the local optima, resulting in unsatisfactory
training effects. In addition, overfitting will occur when the
training data are insufficient, decreasing the generalization
ability of model for new data.

03r

02F

Loss

0.1

0.0F
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Epoch

Fig.10 Loss function curve of the BP network
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Table 13 Comparison of relative prediction errors between BP
and GB-BP networks (%)

AH R,
BP GB-BP BP GB-BP

Relative error 51 29 21 6

Prediction

GA mimics the natural process of biological evolution,
employing selection, crossover, and mutation operations to
search for optimal solutions. It initializes a population to
explore the solution space, enabling it to handle multiple
problems and optimize multiple parameters simultaneously™.
Consequently, GA was introduced to replace the BP process in
the BP network, enabling accurate prediction of multiple
responses®”’. The algorithm flowchart is shown in Fig.11. The
weights and biases of the BP network are encoded as
chromosomes, with their values constrained within the range
[=1, 1]. The fitness function is the mean square error (MSE),
as denoted by Eq. (11). The GB-BP parameters were
determined through experiments, as shown in Table 14.

1 <& A2
MSE :;z(y,— 7)

i=1

(11)

where 7 is the number of test sets, Y, is the ground truth, and
Y . 1s the network predict value.

Similar to the BP network, the first 14 datasets from Table 5
were selected as the training set, and the last two datasets

Start

!

Use Bayesian optimization to determine the
topology structure of neural networks
Generate initial population by encoding
network weights and biases
T
v

Decode to obtain weights and biases

!

Assign weights and thresholds to the newly
built BP network

!
Train the network using training samples

!

Use test samples to test the network

conditions

Decode to obtain optimal
weights and biases

!

Output prediction

!
End

Fig.11 Flow chart of GB-BP network
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Table 14 Parameters of GB-BP network

Parameter Value
Coding method Real number coding
Max iteration 6000
Population size 80
Elite ratio 0.06
Parents portion 0.5
Crossover probability 0.54
Mutation probability 0.01
Crossover type Uniform
Number of nodes in the first hidden layer 10
Number of nodes in the second hidden layer 6

serve as the testing set. Fig. 12 illustrates the loss function
curve, which appears much smoother compared to that of the
BP network. This is because, after the introduction of GA, the
BP network can adjust weights according to gradients derived
from GA optimization, enabling the fine-tuning of the model
and avoiding loss fluctuations caused by overfitting.
Additionally, GA eliminates reliance on a fixed learning rate.
Instead, it determines the direction and amplitude of weight

updates through evolutionary processes, resulting in a more

stable training process. Fig. 13¢ — 13d show the prediction
results of the GB-BP network. The relative prediction errors
for AH and R, are calculated to be 29% and 6%, respectively,
as shown in Table 13. These results show that the prediction
error for AH is larger than that for R,. The main reason is that,
compared with R, the response of AH has a weaker
correlation with several process parameters mentioned in this
research. In addition, the predictions of the network are based
on a model trained with a small sample size. If the number of
training samples is increased, the prediction accuracy will be
improved to a certain extent.

Objective Function
S < =
o —_ —_
& 0 o

et
(=)
X

0 2000 4000 6000

Iteration

Fig.12 Objective function curve of GB-BP network
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Fig.13 Comparison between results predicted by BP (a—b) and GB-BP (c—d) networks: (a, ¢c) AH and (b, d) R,

It is evident that compared to that of the BP network
predictions, the relative error of the GB-BP network
predictions is significantly reduced, and the prediction
accuracy is greatly improved. Compared with the traditional
BP network, the GB-BP network has improved prediction
accuracy of AH and R, by 43.14% and 71.43%, respectively.

The k-fold cross-validation method was used to verify the
generalization ability of the GB-BP network™. The dataset
was divided into eight folds, each containing two data groups.
In each iteration, 7 folds (14 datasets) were used for training,
and one fold (2 datasets) was used for verification. This
process was repeated 8 times to complete all training and
validation cycles, with the results shown in Table 15. The
results show that the average relative error of the GB-BP
network in predicting AH is 42%, and that for R, is 19%,
which are much smaller than the prediction errors of the BP

Table 15 Cross-validation results of GB-BP network (%)

Relative error

No.
AH R,
1# 40 19
2# 37 19
3# 26 19
4# 33 29
5# 44 18
6# 64 13
7# 38 18
8# 52 18
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network. It is proved that the GB-BP network can accurately
predict multiple responses and has strong generalization
ability.

4 Conclusions

1) A wvisual inspection system was constructed to
characterize the surface morphology quality of the printed
parts. Through collection and analysis of data, the height error
and surface roughness between the point cloud model of the
printed part and the theoretical model are calculated, serving
as performance parameters for evaluation.

2) Through Taguchi experiments and SNR analysis, the
influence order of process parameters on the individual
response of AH is SS>PR>LP>SD. For the individual
response of R, the influence order is SD>PR>SS>LP. Using
the grey relational analysis method to evaluate the multi-
objective response, the influence order of process parameters
is SD>PR>SS>LP. The optimal parameter combination is
determined to be LP1PR1SD3SS3, with specific values: LP of
800 W, PR of 1.6 r/min, SD of 1.6 mm, and SS of 20 mm/s.

3) Considering the multifactorial characteristics of the
metal powder LDED process, a GB-BP network is designed to
predict the AH and R, of printed parts, aiming to improve
manufacturing efficiency. The BO algorithm is used to
determine the optimal number of hidden layers and nodes for
the BP network, while GA replaces the BP process to improve
its performance. Experimental verification shows that the GB-
BP network significantly improves prediction accuracy
compared with the traditional BP network, with the prediction
accuracy of AH and R, increasing by 43.14% and 71.43%,
respectively.

4) The future research will focus on expanding the dataset
and refining the network, aiming to improve the accuracy of
multi-target response predictions for multi-layer and multi-
pass metal printed parts.
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