
Rare Metal Materials and Engineering
Volume 55, Issue 1, January 2026
Available online at www.rmme.ac.cn

Cite this article as: Li Yaguan, Nie Zhenguo, Li Huilin, et al. Intelligent Parameter Decision-Making and Multi-

objective Prediction for Multi-layer and Multi-pass LDED Process[J]. Rare Metal Materials and Engineering, 

2026, 55(01): 47-58. DOI: https://doi.org/10.12442/j.issn.1002-185X.20250065.

Intelligent Parameter Decision-Making and Multi-objective Intelligent Parameter Decision-Making and Multi-objective 
Prediction for Multi-layer and Multi-pass LDED ProcessPrediction for Multi-layer and Multi-pass LDED Process
Li Yaguan1,2,    Nie Zhenguo2,3,4,    Li Huilin2,    Wang Tao1,    Huang Qingxue1

1 College of Mechanical Engineering, Taiyuan University of Technology, Taiyuan 030024, China; 2 Department of Mechanical Engineering, 

Tsinghua University, Beijing 100084, China; 3 State Key Laboratory of Tribology in Advanced Equipment, Tsinghua University, Beijing 100084, 

China; 4 Beijing Key Laboratory of Precision/Ultra-precision Manufacturing Equipment and Control, Tsinghua University, Beijing 100084, China

Abstract: The key parameters that characterize the morphological quality of multi-layer and multi-pass metal laser deposited parts are 
the surface roughness and the error between the actual printing height and the theoretical model height. The Taguchi method was 
employed to establish the correlations between process parameter combinations and multi-objective characterization of metal 
deposition morphology (height error and roughness). Results show that using the signal-to-noise ratio and grey relational analysis, the 
optimal parameter combination for multi-layer and multi-pass deposition is determined as follows: laser power of 800 W, powder 
feeding rate of 0.3 r/min, step distance of 1.6 mm, and scanning speed of 20 mm/s. Subsequently, a Genetic Bayesian-back 
propagation (GB-BP) network is constructed to predict multi-objective responses. Compared with the traditional back propagation 
network, the GB-back propagation network improves the prediction accuracy of height error and surface roughness by 43.14% and 
71.43%, respectively. This network can accurately predict the multi-objective characterization of morphological quality of multi-layer 
and multi-pass metal deposited parts.
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11  Introduction  Introduction

Laser-directed energy deposition (LDED) is a specific 
additive manufacturing technique that employs precise 
process parameters to produce solid workpieces. It enables 
surface modification of workpieces through a specialized 
cladding layer, enhancing their resistance to high-temperature 
wear and corrosion. Due to its inherent characteristics, such as 
high energy density, high efficiency, high design freedom, 
rapid fabrication speed, and exceptional physical and 
mechanical properties, LDED is extensively applied in 
aerospace[1], medical equipment[2], and the manufacturing of 
other large-sized components[3]. Metal powder is the 
commonly used raw material in this process, in which a 
nozzle injects the powder into the molten pool under the 
action of a carrier gas, which then cools and solidifies.

With the rapid development of laser cladding technology[4], 
there has been an increasing demand for higher surface 

forming quality of workpieces, while the tolerance for shape 
and size deviations in multi-layer and multi-pass cladding 
processes has become more stringent.

The laser cladding process involves various parameters, 
including laser spot diameter, laser power, powder-feeding 
rate, scanning speed, overlap rate, shielding gas flow rate, and 
powder-feeding gas flow rate. Different parameter 
combinations affect the forming quality of the cladded 
parts[5–7]. Extensive research has been conducted on the 
influence of single-layer cladding processes on cladding 
height, width, and depth[8], as well as the influence of process 
design on properties such as strength, hardness, high-
temperature resistance, and corrosion resistance of the 
cladding layer[9–11]. Numerous experimental verifications have 
been employed to analyze how different process parameters 
affect the single-layer cladding[12]. The Taguchi method, 
response surface methodology, and grey relational analysis are 
commonly used for parameter optimization and response 
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prediction[13–14]. Marzban et al[15] conducted orthogonal 
experiments and found the optimal solution by combining 
principal component analysis with the technique for order 
preference by similarity to ideal solution. Deng et al[16] 
combined the Taguchi method with grey relational analysis to 
optimize the multi-objective response parameters of TiC 
particle-reinforced iron-based composite cladding layers 
prepared by preset powder laser cladding. Mondal et al[17] 
conducted orthogonal experiments to study the effects of laser 
power, scanning speed, and powder-feeding rate on cladding 
layer quality on AISI1040 steel substrates, and proposed a 
multi-objective response approach using grey relational 
analysis to determine optimal process parameters. Quazi et 
al[18] adopted the Taguchi optimization method and used signal-
to-noise ratio (SNR) response analysis and Pareto analysis of 
variance to analyze results. Experimental validation of the 
optimized parameter combination revealed significant 
improvements in surface hardness and roughness of the 
AA5083 cladding layer. Yu et al[19] used the Taguchi grey 
relational method to optimize the process parameters for laser 
cladding of Fe313, with cladding width, height, and dilution 
rate selected as response targets. Their findings demonstrated 
that the optimized cladding layer exhibits improved 
morphology and structure compared to the unoptimized layer. 
Lian et al[20] designed a Taguchi experiment to study the 
effects of process parameters on the microhardness and wear 
volume of the cladding layer, aiming to improve its 
performance. The grey relational analysis method was used to 
determine the optimal process parameters and predict their 
grey relational grade (GRG). The results showed that the 
average error between the predicted and experimental results 
was 5.3%. Lee et al[21] investigated the impact of process 
parameters on the geometry of single-pass laser cladding 
layers of AISI M4 and employed response surface 
methodology to establish a mathematical model for predicting 
and controlling the layer geometry. Alam et al[22] employed the 
central composite response surface methodology to design 
orthogonal experiments, focusing on the influence of selected 
process parameters on the geometry and hardness of single-
pass laser cladding layers of AISI 420 metal powder. A 
multivariate regression model was also established to predict 
the hardness of cladding layer, the aspect ratio of weld bead, 
and the wetting angle of substrate. Bhardwaj et al[23] studied 
the influence of process parameters (laser power, scanning 
speed, and powder feeding rate) on the geometric properties of 
cladding layers, especially the dilution rate, based on the 
response surface method and variance analysis. The mapping 
relationship between parameters and geometric properties was 
established by regression modeling to find the optimal 
experimental parameters.

In addition to the aforementioned traditional methods, 
machine learning and artificial neural networks, especially 
back propagation (BP) neural networks, have been widely 
used in laser cladding for process parameter optimization and 
multi-objective response prediction[24–25]. Li et al[26] developed 
a BP neural network to predict the influence of process 

parameters on dilution rate, and its prediction error was 
5.89%. However, this model is highly dependent on the 
dataset size and tends to fall into local minima when the 
number of samples is restricted. Swarm intelligence 
algorithm, such as genetic algorithm (GA) [27], have strong 
global optimization capabilities. Therefore, many scholars 
have proposed combining GA with BP networks to solve 
problems such as slow GA convergence and susceptibility to 
local minima, thereby achieving fast and accurate global 
optimization. Ilanlou et al[28] performed a full factorial 
experiment to investigate the influence of process parameters 
on the geometric characteristics of Inconel 718 rails. They 
predicted the geometric characteristics of the cladding layer 
through linear regression and GA under different parameter 
combinations. Yang et al[29] integrated BP neural networks 
with GA to establish a prediction model that links process 
parameters to the surface morphology quality of laser 
cladding layers, and verified the prediction accuracy of the 
model through experiments. Liu et al[30] established a GA-BP 
neural network, using laser power, scanning speed, and 
powder thickness as process parameters. They conducted a 
full factorial experiment to generate a dataset and predicted 
the geometric characteristics of single-layer and single-pass 
cladding layers produced by a high-power semiconductor 
laser. Yu et al[31] designed an orthogonal experiment with 
overlap rate, powder feeding rate, and scanning speed as 
process parameters, and established a neural network model to 
predict the crack density of high-hardness nickel-based laser 
cladding layers. The results were optimized using GA, and the 
reliability of model was validated through experiments. Deng 
et al[32] designed a Taguchi experiment and used the SNR and 
variance analysis method to analyze the effects of laser power, 
spot diameter, overlap rate, and scanning speed on the micro-
hardness of Ti(C, N) ceramic cladding layers. Furthermore, a 
BP neural network combined with a quantum particle swarm 
optimization algorithm was employed to establish a mapping 
relationship between process parameters and responses for 
accurate prediction. Wang et al[33] developed a powder-scale 
multi-physics model, which incorporated mass transfer, phase 
change, and heat transfer during the LDED process to predict 
the geometric characteristics of single-layer and single-pass 
cladding tracks. In addition, a Gaussian regression model was 
also established to predict the geometry of cladding tracks 
under various parameter combinations.

Existing parameter optimization methods for LDED 
primarily focus on single-layer single-pass or single-layer 
multi-pass cladding, with few research on multi-layer and 
multi-pass cladding. However, due to the heat accumulation 
between layers, the manufacturing accuracy of multi-layer and 
multi-pass cladding is more sensitive to process parameters. 
Furthermore, when orthogonal tests involve many factors, it is 
difficult to determine the variation pattern in the experimental 
data. The optimal result is usually a combination of 
parameters, which can not only accurately predict the height 
error and surface roughness but also obtain the optimal 
process parameters.
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In this study, the Taguchi method was used to design 
orthogonal experiments, and the SNR of multi-objective 
responses was analyzed. Additionally, the grey relational 
analysis method was used to predict the optimal parameters 
for multi-layer and multi-pass cladding, aiming to minimize 
both the theoretical and actual height error (ΔH) of the printed 
parts and the surface roughness (Ra). Experimental verification 
was then conducted. Subsequently, a GB-BP network was 
constructed to predict multi-objective responses.

22  Experiment  Experiment

Fig.1 illustrates the research approach, which includes laser 
cladding equipment and a visual inspection system. Point 
cloud data were collected to calculate the height difference 
and surface roughness of the printed parts. A hybrid approach 
employing the Taguchi method and grey relational analysis 
was used to identify the optimal parameter combination. 
Furthermore, a GB-BP network model was constructed for 
multi-objective response prediction.
2.1  Materials and equipment

The printing equipment includes an optical platform, a 
three-axis motion system, a control console, a powder feeder, 
a laser, a powder feeder barrel, a water cooler, and a structured 
light camera. The structured light camera projects a custom-
designed pattern onto the surface of the three-dimensional 
object while utilizing an integrated camera to capture the 
image distortion on the physical surface.

The substrate used in the experiment was 316 stainless steel 
with dimensions of 100 mm×100 mm×8 mm. The 
experiments used gas-atomized 316L powder (Carpenter 

Additive) with a particle size of 53 – 120 μm. 316L powder 
was mainly spherical, with fine satellite particles adhering to 
the surface of powder particles. The composition of both the 
powder and the substrate was confirmed using energy 
dispersive spectrometer (EDS), and their elemental 
composition is presented in Table 1. Before laser cladding, the 
metal powders were incubated in a drying oven at 100 ℃ for 
2 h. The dried powder was then loaded into the powder 
hopper, ready for deposition onto the substrate via the laser 
cladding process. Before deposition, the substrate surface was 
cleaned with anhydrous ethanol to remove contaminants. 
After drying, the experiment was conducted.

The experiment used a laser cladding system with a 
maximum output power of 2000 W. The laser spot diameter 
was 2 mm, and high-purity argon was used as the shielding 
gas and powder-feeding gas during cladding. After multi-layer 
laser cladding, a 3D point cloud model of the component was 
acquired using an optical camera to calculate its ΔH and Ra. 
Under ideal conditions, the surface coating formed by multi-
pass cladding exhibited a cross-section with relatively regular 
convex and concave morphologies. Fig.2 illustrates the profile 
curve of this cross-section, and the roughness Ra can be 
calculated by Eq.(1).

Ra =
∫

0

L

|| z ( x ) dx

L
=

1
n∑i = 1

n

|| zi (1)

where z ( x ) is the longitudinal distance of the section profile; 

L is the transverse distance of the section contour; n is the 
number of test points; zi is the longitudinal distance of the 
cross-section profile of each test point.

The multi-layer and multi-pass laser deposition process 
gradually achieved the preparation or repair of complex 
structures by the gradual deposition of metal materials in 
multiple layers (via repeated superposition) and multiple 
passes (each pass follows a different direction). In this 
process, the laser beam was focused on the metal surface and 

Fig.1  Schematic diagram and flowchart of laser cladding system

Table 1  Composition of substrate and powder materials (wt%)

Element

Substrate

Powder

C

0.03

0.06

Cr

17.0

18.16

Si

0.5

0.49

Ni

13.0

8.05

Mn

0.2

1.06

Mo

2.0

0.11

Fe

Bal.

Bal.
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locally heated it to a molten state. The molten metal combined 
with the feed powder or wire to form a molten pool. In each 
layer, the molten pool followed a predetermined scanning 
trajectory, and once a layer was completed, the deposited 
molten metal underwent rapid cooling and solidification. The 
laser was applied continuously on the new layer to form a 
metallurgical bond with the previous layer. This process was 
repeated until the target part geometry was achieved. The 
repeated cross-scanning characteristics of this process 
imposed higher requirements on the scanning path and 
direction[34]. The filling path determined the internal structure 
of the printed model, thereby directly affecting the strength 
and stability of the prepared object.

The angle setting of linear filling impacts the strength, 
appearance, and stability of the printed parts in 3D printing. 
The linear filling angle affects the strength of the printed parts 
in different directions. Usually, the strength direction of the 
printed part is parallel to the direction of the filling path. 
Commonly used filling angles are 0°, 45°, 90°, and 135°, and 
the filling path at each angle provides different strength 
support. For instance, parts filled at 0° and 90° perform well 
under lateral and longitudinal pressures, respectively. Filling 
angles of 45° and 135° provide balanced support in multiple 
directions. Due to the staggered layout of 45° and 135° angles, 
they can share strength in multiple directions, generally 
yielding more uniform strength compared to horizontal or 
vertical filling[35]. Therefore, this work adopted the second 
filling method, as shown in Fig. 3a, and the effect of multi-
layer and multi-pass cladding using this method is shown in 
Fig.3b.
2.2  Experimental design 

In this study, laser power, powder feeding rate, step 
distance, and scanning speed were selected as the key factors 
influencing the flatness of the top surface of component. Table 
2 lists these four factors and their corresponding levels. A     
L16(4

4) Taguchi orthogonal experimental design was adopted, 
with the orthogonal array presented in Table 3. Two response 
items, ΔH and Ra, were selected to evaluate the printing 

quality, aiming to obtain a multi-layer cladding workpiece 
with excellent comprehensive performance.

33  Results and Discussion  Results and Discussion

3.1  Experiment results

Different combinations of process parameters will result in 
different thicknesses of the cladding layer. Therefore, it is 
imperative to determine the single-layer cladding thickness 
corresponding to each parameter combination before multi-
layer cladding. The 16 sets of parameters in Table 3 were used 
for laser cladding, and the single-layer cladding height (H1) 
was measured as the benchmark thickness for multi-layer 
cladding.

Fig. 4 illustrates the experimental results of cladding a 
single layer, and Table 4 provides the thickness of the 
cladding layer corresponding to different parameters.

The target heights for 16 parameter combinations were used 
as the baselines, and multi-layer cladding was performed 
accordingly. The experimental results are shown in Fig.5. Due 
to the installation constraints of the measuring equipment, the 
maximum achievable printing height in the current can reach 
20 mm. Within this range, it is reasonable to use ΔH to 

y
L

z(x)

o

dx
x

Fig.2  Profile curve of ideal coating cross-section

a b

Fig.3  Schematic diagrams of filling path direction (a) and effect of 

multi-layer and multi-pass cladding (b)

Table 2  Process parameters of laser cladding and corresponding 

levels

Parameter

Laser power, LP/W

Powder feeding rate, PR/r·min−1

Step distance, SD/mm

Scanning speed, SS/mm·s−1

Level

1

800

0.3

1.0

16

2

900

0.4

1.2

18

3

1000

0.5

1.4

20

4

1100

0.6

1.6

22

Table 3  L16(4
4) taguchi orthogonal experimental design

No.

1#

2#

3#

4#

5#

6#

7#

8#

9#

10#

11#

12#

13#

14#

15#

16#

LP/W

900

1000

800

1100

800

900

1000

1100

800

1000

1100

900

1100

900

1000

800

PR/r·min−1

0.6

0.4

0.6

0.3

0.5

0.5

0.3

0.4

0.3

0.5

0.6

0.4

0.5

0.3

0.6

0.4

SD/mm

1.0

1.2

1.2

1.2

1.0

1.2

1.0

1.0

1.4

1.4

1.4

1.4

1.6

1.6

1.6

1.6

SS/mm·s−1

16

16

20

18

18

22

22

20

16

20

22

18

16

20

18

22
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characterize the height error. In principle, this method is also 
applicable to greater printing thicknesses. Table 5 lists the 
measurement results for the two response metrics of all 
specimens.

The point cloud model on top layer of printed part was 
extracted, and the plane fitting was performed. As shown in 
Fig.6, the distance from the plane to the substrate is calculated 
as the actual printing height; subtracting this value from the 
theoretical height gets the height error. The distance from each 
point in the top layer point cloud to the fitted plane is 
calculated, and the average of these distances is taken as the 
surface roughness of the printed part. During experimental 
measurements, high-precision measuring equipment was used 
to ensure the accuracy of the measured data. The possible 
error range during roughness characterization is attributed to 
the measurement error of the equipment, which is less than 
0.01 mm.
3.2  Calculation of SNR for each response and Taguchi 

analysis

SNR is introduced as an evaluation index. According to 
specific requirements, SNR characteristics are divided into 
three types: larger, smaller, and nominal values, corresponding 
to the target values of maximizing, minimizing, and reaching 
or approaching The quality response, respectively. The 
calculation formulas for these three types are given in          

Eq.(2–4).

SNR = -10lg ( 1
n∑i = 1

n 1
y2

i ) (2)

SNR = -10lg ( 1
n∑i = 1

n

y2
i ) (3)

SNR = -10lg
é

ë
êêêê

ù

û
úúúú

1
n∑i = 1

n

( )yi - m
2

(4)

where SNR is the quality characteristic, n is the number of 
experiments, m is the experimental target value, and yi is the 
experimentally measured data. For the two responses, namely 
the ΔH and Ra, the goal is to minimize them. Thus, Eq.(3) is 
employed to calculate SNRs of these two responses. Table 6 
lists SNRs values corresponding to each group of experiments.

The mean SNR values for each level are calculated using 
Eq. (5) to assess the effect of different factor levels on the 
surface properties of the blade. For a given factor, the factor 
level yielding the highest mean SNR is considered the optimal 
level.

Rxi =
1
k∑i = 1

k

( )SNR i (5)

where Rxi is the mean value of the SNR corresponding to each 
factor level, SNRi is the SNR containing the associated level, 
and k is the number of experiments.

Extreme deviation is the difference between the highest and 
lowest average response values of SNR of the factor level. It 
quantifies the relative impact of different factor levels on 
experimental outcomes. The larger the extreme deviation, the 
more significant the influence of that factor. Table 7 shows 
average SNR value responses of each level for various 
aspects. Fig. 7 illustrates the trends of SNR for each factor 
along with the two corresponding responses ΔH and Ra. The 
SNR analysis reveals that the optimal parameters for mini-
mizing ΔH and Ra are LP1PR1SD3SS4 and LP2PR1SD4SS3, 
respectively.

According to the SNR ranking analysis, the influence of 
each process parameter on ΔH of the top layer follows the 
order: SS>PR>LP>SD. Among these, SS exerts the most 
significant influence on the cladding layer height. If SS is too 
slow, the prolonged residence of the laser head in the molten 
pool leads to an increased heat transfer to either the substrate 
or the preceding cladding layer, resulting in a progressively 
higher cladding layer height that surpasses its theoretical 
value. Conversely, if SS is excessively high, the nozzle injects 
a reduced amount of metal powder into the molten pool, 
diminishing the heat transferred to the powder. As a result, the 
cladding layer height is less than its theoretical value. 
Therefore, selecting an appropriate SS is crucial for 
minimizing height errors and improving the quality of printed 
part.

According to the SNR ranking analysis, the influence of 

Fig.4  16 sets of parameters for single-layer cladding experiments

Table 4  H1 of cladding layer corresponding to different parameter combinations (mm)

No.

H1

1#

0.97

2#

0.71

3#

0.82

4#

1.22

5#

1.48

6#

1.32

7#

0.38

8#

0.73

9#

0.39

10#

0.57

11#

0.70

12#

0.61

13#

0.35

14#

0.50

15#

0.45

16#

0.18

Fig.5  16 sets of parameters for multi-layer cladding experiments
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each process parameter on Ra of the top layer follows the 
order: SD>PR>SS>LP. The roughness of the top surface is 
mainly affected by the overlap ratio, which is characterized by 
selected SD in this research. When SD is excessively small, 
the overlapping area between adjacent cladding layers 
increases. This may cause excessive material accumulation in 
a specific area, resulting in protrusions or waviness on the 
surface and thus increasing the surface roughness. In addition, 
the heat is concentrated in the overlapping area, which may 
cause thermal deformation or burning of the cladding 
material. These phenomena may induce microcracks or 
defects, further increasing the surface roughness. When SD is 
excessively large, as the cladding material fails to fully cover 
the area, insufficient overlap between cladding layers can lead 
to incomplete local fusion, forming weak zones and an uneven 
surface, thereby increasing roughness. Moreover, insufficient 
overlap may diminish the bonding strength between cladding 
layers, making them prone to peeling or flaking, and thus 
affecting the overall surface flatness. This is consistent with 
the conclusions of Ref.[36]. Thus, choosing a suitable SD and 
corresponding overlap ratio is critical for smoothing surface 
irregularities of the workpiece and significantly reducing its 
roughness.
3.3  Multi-objective optimization by grey relational 

analysis

The Taguchi method is a single-objective response 
optimization method, while this research aims to optimize two 
objectives simultaneously. Therefore, the grey relational 
theory is introduced for multi-objective optimization to 
determine the optimal laser cladding parameters. The grey 
relational theory effectively integrates multiple targets into a 
single objective by converting individual responses into 
GRG[37].

Grey relational analysis requires a series of calculations[38]. 
The first step is data normalization. Since the numerical range 
and unit of each response are different, normalization is 
necessary. Eq. (6) is used for this normalization, scaling the 
data to the range between 0 and 1, and its scale remains 
unchanged. The normalized results are shown in Table 8.

Xi (k ) =
Yi (k ) - min [ ]Yi (k )

max [ ]Yi (k ) - min [ ]Yi (k )
(6)

where [Yi(k)] is the SNR for the response k (k=1, 2) of 
experiment i (i=1, 2, ..., 16); max [Yi(k)] and min [Yi(k)] are the 
maximum and minimum values of the response k among all 
16 experiments, respectively; Xi(k) is the normalized value of 
the experiment i and response k.

Then, the grey relational coefficient (GRC) is calculated by 
Eq.(7)[38].

GRCi (k) =
min i || x0

i - Xi (k ) + ξmax i || x0
i - Xi (k )

|| x0
i - Xi (k ) + ξmax i || x0

i - Xi (k )
(7)

where GRCi(k) is the GRC for the response k (k=1, 2) of 
experiment i (i=1, 2, ..., 16); xi

0 is the ideal value of 
experiment i (i=1, 2, ..., 16) and xi

0=1 in this work; ξ is the 
distinguishing coefficient over the range of 0< ξ <1. In this 
study, ξ is set to 0.5 by comprehensively considering the 

Table 5  Measurement results of ΔH and Ra for multi-layer 

cladding (mm)

No.

1#

2#

3#

4#

5#

6#

7#

8#

9#

10#

11#

12#

13#

14#

15#

16#

∆H

2.3442

1.0478

0.8859

3.7846

3.4965

3.5757

1.1789

0.5584

0.9551

1.4096

1.4056

0.8691

2.8770

0.0343

2.7508

1.8251

Ra

0.3145

0.2003

0.1395

0.1372

0.2191

0.1538

0.1130

0.2102

0.0825

0.1104

0.1369

0.1128

0.1309

0.0974

0.1331

0.0850

Fig.6  Results of the top layer plane fitting of the printed part

Table 6  SNR of response targets (mm)

No.

1#

2#

3#

4#

5#

6#

7#

8#

9#

10#

11#

12#

13#

14#

15#

16#

ΔH

−7.400

−0.406

1.052

−11.560

−10.873

−11.067

−1.430

5.061

0.440

−2.982

−2.957

1.219

−9.179

29.294

−8.789

−5.226

Ra

10.046

13.964

17.110

17.252

13.187

16.261

18.938

13.549

21.670

19.138

17.271

18.952

17.660

20.227

17.517

21.414
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analytic effect and result stability[16]. GRC characterizes the 
relationship between the actual normalized SNR values and 

the ideal values, where the ideal values are uniformly set to 
1000. Finally, the integrated GRG calculation is achieved 
using Eq.(8)[38].

GRG i =
1
n∑k = 1

n

GRC i (k ) (8)

where GRGi is the GRG of experiment i (i=1, 2, ..., 16), n is 
the number of the responses, and n=2 in this work. Eq.(8) can 
equally weigh the importance of ΔH and Ra.

GRC and correlation levels for each process parameter are 
calculated, as shown in Table 9. To obtain a parameter com-
bination that ensures good printing quality, the Taguchi me-
thod is integrated into the grey relational analysis. Fig.8 shows 
the main effect plot of GRG. According to the analysis, the 
optimal process parameter combination is LP1PR1SD3SS3; 
LP is 800 W, PR is 0.3 r/min, SD is 1.6 mm, and SS is          
20 mm/s.

In addition, Table 10 shows the importance ranking of 
factors with respect to the GRG, which follows the order:     
SD>PR>SS>LP. SD plays a leading role in influencing both 
the height error and roughness.
3.4  Experimental verification of optimal parameters

An additional verification experiment is necessary since the 

Table 7  Responses of SNR for ∆H and Ra (mm)

Level

1

2

3

4

Delta

Rank

ΔH

LP

−3.66

3.01

−3.40

−4.66

7.67

3

PR

4.17

0.16

−8.52

−4.52

12.70

2

SD

−3.66

−5.49

−1.08

1.53

7.02

4

SS

−4.15

−7.50

8.11

−5.17

15.61

1

Ra

LP

18.35

16.37

17.39

16.43

1.97

4

PR

19.52

16.97

16.56

15.49

4.04

2

SD

13.93

16.15

19.26

19.20

5.33

1

SS

15.83

16.73

17.51

18.47

2.64

3
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Fig.7  Main effect plots for the SNR analysis of responses: (a) ΔH 

and (b) Ra

Table 8  Normalized SNR value of response targets (mm)

No.

1#

2#

3#

4#

5#

6#

7#

8#

9#

10#

11#

12#

13#

14#

15#

16#

∆H

0.102

0.273

0.309

0.000

0.017

0.012

0.248

0.407

0.293

0.210

0.211

0.313

0.058

1.000

0.068

0.155

Ra

0.000

0.337

0.608

0.620

0.270

0.535

0.761

0.301

1.000

0.782

0.622

0.766

0.655

0.876

0.643

0.978

Table 9  Grey relational analysis data for responses

No.

1#

2#

3#

4#

5#

6#

7#

8#

9#

10#

11#

12#

13#

14#

15#

16#

GRC

ΔH

0.358

0.408

0.420

0.333

0.337

0.336

0.399

0.457

0.414

0.388

0.388

0.421

0.347

1.000

0.349

0.372

Ra

0.333

0.430

0.560

0.568

0.407

0.518

0.680

0.417

1.000

0.679

0.569

0.681

0.592

0.801

0.583

0.958

GRG

Value

0.345

0.419

0.490

0.451

0.372

0.427

0.540

0.437

0.707

0.542

0.478

0.551

0.469

0.814

0.466

0.665

Rank

16

14

7

11

15

13

6

12

2

5

8

4

9

1

10

3
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optimal parameter combination is not involved in the L16(4
4) 

orthogonal array. Eq.(9)[38] can predict the GRG.

GRGp = GRGm +∑
j = 1

n ( )GRG j - GRGm (9)

where GRGm is the mean value of total GRG; n is the number 
of process parameter and n=4 in this work; GRGj is the mean 
value of all GRG for processing parameter j (j =1, 2, 3, 4) at 
its optimal level; GRGp is the predicted GRG at the selected 
level.

With the optimal process parameters, the GRGp is 0.828. 
Comparing the results of the single-target response for ΔH and 
Ra with the grey relational analysis results, it can be seen that 
the predicted results of GRGPre and the experimentally calcu-
lated GRGExp exhibit consistent trends in magnitude, as shown 
in Table 11. This further confirms that the parameters obtained 
by the multi-target grey relational analysis are optimal.
3.5  Multi-objective prediction based on GB-BP network

Due to the complexity of the metal LDED process and the 
inherent variability in product requirements, it is not advisable 
to conduct individual experiments. Instead, a mapping 
relationship between process parameter combinations and 

responses should be established based on a few samples. 
Artificial neural network (ANN) is a computational model 
miming biological neural networks[39]. Its architecture 
typically contains an input layer responsible for receiving 
input data, multiple hidden layers that process and extract 
features from the input data, and an output layer that generates 
the final result. The BP network is the most widely used ANN 
model[40]. It employs BP algorithm to optimize the weights and 
biases of network, thereby improving the accuracy of model. 
The structural diagram of the BP network is shown in Fig.9. 
This method establishes the correlation between input process 
parameters (LD, PR, SD, and SS) and output parameters (Ra 
and ΔH).

The appropriate number of neurons enhances the prediction 
accuracy of network. Bayesian optimization (BO) is employed 
to determine the optimal configuration, including hidden 
layers, neurons, and network learning rate[41]. BO constructs a 
Gaussian process probability model to represent the possible 
distribution of the objective function.

The model is updated by randomly selecting a set of points 
for evaluation. Therefore, new evaluation points are identified 
and added to the model for iterative refinement. This process 
is repeated until either the maximum number of iterations is 
reached or a predetermined level of accuracy is converged 
upon. The parameters of the selected BP network are shown in 
Table 12. The initial 14 datasets from Table 5 serve as the 
training set, and the last two datasets constitute the testing set. 
The root mean square error (RMSE) is used to evaluate the 
network performance, as shown in Eq.(10).

Table 12  Parameters of BP network

Parameter

Activation function

Optimizer

Epoch

Learning rate

Number of hidden layers

Number of nodes in the first hidden layer

Number of nodes in the second hidden layer

Value

Sigmoid

Adam

600

0.027

2

10

6

ΔH

Ra

LP

PR

SD

SS

Fig.9  Topology diagram of BP network

LP/W PR/r·min-1 SD/mm SS/mm·s-1

0.65

0.60

0.55

0.50

0.45

0.40

M
ea

n 
S

N
R

 f
or

 G
R

G

800   1000        0.3     0.5          1.0     1.4          16      20

Fig.8  Main effect plots for the SNR analysis of GRG

Table 10  Responses for SNR of GRG

Level

1

2

3

4

Delta

Rank

LP

0.559

0.534

0.492

0.459

1.434

4

PR

0.628

0.518

0.453

0.448

2.846

2

SD

0.424

0.447

0.570

0.604

2.958

1

SS

0.485

0.460

0.571

0.528

1.707

3

Table 11  Comparison of single-target response and multi-target 

response results

Parameter

LP/W

PR/r·min−1

SD/mm

SS/mm·s−1

GRGExp

GRGPre

ΔH

800

0.3

1.4

22

0.719

0.751

Ra

900

0.3

1.6

20

0.721

0.804

ΔH+Ra

800

0.3

1.6

20

0.807

0.828
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RMSE =
1
n∑i = 1

n ( )Yi - Ŷi

2

(10)

where n is the number of samples, Yi is the ground truth for 

each data set, and Ŷi is the predicted output of the network.
Fig. 10 illustrates the loss function curve. The relative 

prediction errors for ΔH and Ra are calculated to be 51% and 
21%, respectively, as shown in Table 13. The relative error for 
ΔH is higher than 50%, indicating that its prediction 
performance is not ideal. The BP network is likely to get 
trapped under the local optima, resulting in unsatisfactory 
training effects. In addition, overfitting will occur when the 
training data are insufficient, decreasing the generalization 
ability of model for new data.

GA mimics the natural process of biological evolution, 

employing selection, crossover, and mutation operations to 

search for optimal solutions. It initializes a population to 

explore the solution space, enabling it to handle multiple 

problems and optimize multiple parameters simultaneously[42]. 

Consequently, GA was introduced to replace the BP process in 

the BP network, enabling accurate prediction of multiple 

responses[43]. The algorithm flowchart is shown in Fig.11. The 

weights and biases of the BP network are encoded as 

chromosomes, with their values constrained within the range 

[−1, 1]. The fitness function is the mean square error (MSE), 

as denoted by Eq. (11). The GB-BP parameters were 

determined through experiments, as shown in Table 14.

MSE =
1
n∑i = 1

n (Yi - Ŷi ) 2

(11)

where n is the number of test sets, Yi is the ground truth, and 

Ŷi is the network predict value.

Similar to the BP network, the first 14 datasets from Table 5 

were selected as the training set, and the last two datasets Fig.10  Loss function curve of the BP network

Fig.11  Flow chart of GB-BP network

Table 13  Comparison of relative prediction errors between BP 

and GB-BP networks (%)

Prediction

Relative error

ΔH

BP

51

GB-BP

29

Ra

BP

21

GB-BP

6
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serve as the testing set. Fig. 12 illustrates the loss function 

curve, which appears much smoother compared to that of the 

BP network. This is because, after the introduction of GA, the 

BP network can adjust weights according to gradients derived 

from GA optimization, enabling the fine-tuning of the model 

and avoiding loss fluctuations caused by overfitting. 

Additionally, GA eliminates reliance on a fixed learning rate. 

Instead, it determines the direction and amplitude of weight 

updates through evolutionary processes, resulting in a more 

stable training process. Fig. 13c – 13d show the prediction 
results of the GB-BP network. The relative prediction errors 
for ΔH and Ra are calculated to be 29% and 6%, respectively, 
as shown in Table 13. These results show that the prediction 
error for ΔH is larger than that for Ra. The main reason is that, 
compared with Ra, the response of ΔH has a weaker 
correlation with several process parameters mentioned in this 
research. In addition, the predictions of the network are based 
on a model trained with a small sample size. If the number of 
training samples is increased, the prediction accuracy will be 
improved to a certain extent.

It is evident that compared to that of the BP network 
predictions, the relative error of the GB-BP network 
predictions is significantly reduced, and the prediction 
accuracy is greatly improved. Compared with the traditional 
BP network, the GB-BP network has improved prediction 
accuracy of ΔH and Ra by 43.14% and 71.43%, respectively.

The k-fold cross-validation method was used to verify the 
generalization ability of the GB-BP network[44]. The dataset 
was divided into eight folds, each containing two data groups. 
In each iteration, 7 folds (14 datasets) were used for training, 
and one fold (2 datasets) was used for verification. This 
process was repeated 8 times to complete all training and 
validation cycles, with the results shown in Table 15. The 
results show that the average relative error of the GB-BP 
network in predicting ΔH is 42%, and that for Ra is 19%, 
which are much smaller than the prediction errors of the BP 

Table 14  Parameters of GB-BP network

Parameter

Coding method

Max iteration

Population size

Elite ratio

Parents portion

Crossover probability

Mutation probability

Crossover type

Number of nodes in the first hidden layer

Number of nodes in the second hidden layer

Value

Real number coding

6000

80

0.06

0.5

0.54

0.01

Uniform

10

6

Fig.12  Objective function curve of GB-BP network
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Fig.13  Comparison between results predicted by BP (a–b) and GB-BP (c–d) networks: (a, c) ΔH and (b, d) Ra

Table 15  Cross-validation results of GB-BP network (%)

No.

1#

2#

3#

4#

5#

6#

7#

8#

Relative error

ΔH

40

37

26

33

44

64

38

52

Ra

19

19

19

29

18

13

18

18
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network. It is proved that the GB-BP network can accurately 
predict multiple responses and has strong generalization 
ability.

44  Conclusions  Conclusions

1) A visual inspection system was constructed to 
characterize the surface morphology quality of the printed 
parts. Through collection and analysis of data, the height error 
and surface roughness between the point cloud model of the 
printed part and the theoretical model are calculated, serving 
as performance parameters for evaluation.

2) Through Taguchi experiments and SNR analysis, the 
influence order of process parameters on the individual 
response of ΔH is SS>PR>LP>SD. For the individual 
response of Ra, the influence order is SD>PR>SS>LP. Using 
the grey relational analysis method to evaluate the multi-
objective response, the influence order of process parameters 
is SD>PR>SS>LP. The optimal parameter combination is 
determined to be LP1PR1SD3SS3, with specific values: LP of 
800 W, PR of 1.6 r/min, SD of 1.6 mm, and SS of 20 mm/s.

3) Considering the multifactorial characteristics of the 
metal powder LDED process, a GB-BP network is designed to 
predict the ΔH and Ra of printed parts, aiming to improve 
manufacturing efficiency. The BO algorithm is used to 
determine the optimal number of hidden layers and nodes for 
the BP network, while GA replaces the BP process to improve 
its performance. Experimental verification shows that the GB-
BP network significantly improves prediction accuracy 
compared with the traditional BP network, with the prediction 
accuracy of ΔH and Ra increasing by 43.14% and 71.43%, 
respectively.

4) The future research will focus on expanding the dataset 
and refining the network, aiming to improve the accuracy of 
multi-target response predictions for multi-layer and multi-
pass metal printed parts.
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多层多道次LDED工艺参数智能决策与多目标预测

李亚冠 1，2，聂振国 2，3，4，李荟林 2，王 涛 1，黄庆学 1

(1. 太原理工大学  机械工程学院，山西  太原  030024)

(2. 清华大学  机械工程系，北京  100084 )

(3. 清华大学  先进装备摩擦学国家重点实验室，北京  100084)

(4. 清华大学  精密超精密制造装备及控制北京市重点实验室，北京  100084)

摘 要：表征多层多道次激光金属打印件形貌质量的主要参数是表面粗糙度和实际打印高度与理论模型高度之间的误差。采用田口法建

立工艺参数组合与金属打印形貌质量（高度误差和粗糙度）多目标表征之间的关联性。先通过信噪比和灰色关联分析法预测多层多道次

打印的最优参数组合为：激光功率800 W、送粉速率0.3 r/min、步距1.6 mm、扫描速度20 mm/s；随后构建遗传贝叶斯-反向传播（GB-

BP）网络对多目标响应进行预测。与传统反向传播网络相比，GB-BP网络对高度误差和表面粗糙度的预测精度分别提高了 43.14%和

71.43%。该网络可以准确预测多层多道次激光定向能量沉积金属打印部件的形貌和质量的多目标表征。

关键词：多层多道次激光熔覆；田口法；灰色关联分析；GB-BP网络

作者简介：李亚冠，男，1995年生，博士，太原理工大学机械工程学院，山西  太原  030024，E-mail：liyaguan0014@link.tyut.edu.cn

58


