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Table 1 Chemical composition of 2024 aluminum alloy substrate and 2219 aluminum alloy welding wire (wt%)

Material Cu Mg Si Mn Fe Zr Ti Zn Al
2024 substrate 4.52 1.63 0.50 0.35 0.50 <0.01 0.15 0.25 Bal.
2219 welding wire 597 0.052 0.028 0.31 0.116 0.20 0.12 <0.01 Bal.
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Fig.1 Schematic diagrams of thin-wall formation quality testing: (a) straightness of wall thickness along the scanning direction; (b) straightness of

wall thickness along the deposition direction; (c) porosity



B SRFE: T AL S B A e r U A R £ O TR T &% 2 H ARG + 107 -
5 :% % 100% ) oo TZME SR R 288 A B 4 SR U I 2% S 8, R4S )

b4, Ros LB, 4, Rom G AR A .

AR SIS 196 X3 o e ICHS B4 1 DG B T2 S8 LR
(current, D - ¥ 4 # % (travel speed, TS) Fll i% 22 # %
(wire feed speed, WFS)1E ML 5 I B AL [ N, R H
=R =AKPEEF IR &I, L 27TH T ZESHAE,
AASHEE MR 2 iR .

3 HBIFIRE
3.1 GA-BP &M LEiGE

AW G R FH FL RS2 J2 BP 28 I 28 ) T ASE 2RY ,
NJE CHL F M 2 ik 22 380200 i 2 (B A%/ 2 () BE
JEARE 22 S FLBR 26D ¥ 9 3741 A, xS 27 L8 H s 1%
8:2 ELBI R 7 R AR SR SE .l 428 A e &
JE1 RO N 4~12, 8715 R8O ) 50k B VR AS 5 ik e
571 R K 3-5-3 Mg Sy (B 2) . TR tansig B8 41
R om AR WL, B )2 A8 purelin oR 0 0R 3532 25 T
W1, 45 4 Levenberg-Marquardt 5572 38 i 8, FF 38 i
[0, 17VH— AL A HI R 7 TP o X Y R AL A /D 1) ) fiE
AT TR 5328 XUk g5 2, DA A AL 72 1 e
LR /INFEA A TR 1 I 400 G XUR

I=Jn+m+a (3
o, n NN R R m N R S a N 1~1011)
F=es

DAL 25 BP B 5 B ey 3 dpe A e @, 5] N a4 B
A GA-BP IR A BRI, SR A S8 i AR i 52 4 G
TR O B X 28 A RIAED , 12 L S0 Fh RS A 100 7K, BA
WIZREEY J7 AR 25 (RMSED y3d B & vt @ ik 0.2 58 X
WE 2R 8] B 3 AN B) A& A8 7 SR g~ A 4 R A R 5 R

*2 2EFRERERZFKFR

Table 2 Factor-level table for full-factorial experiment

Parameter Level-1 Level-2 Level-3
A /A 150 170 190
B TS/mm-min™' 200 250 300
C WFS/mmin™ 4 5 6
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Fig.2 Schematic diagram of the single-hidden-layer BP neural network structure
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Fig.4 Pearson correlation coefficients between forming quality and process parameters: (a) S-Straight; (b) D-Straight; (c) porosity
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Table 4 Prediction results of test sets of BP and GA-BP models
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Fig. 9 Comparison between predicted values and sample values of testing sets from BP and GA-BP neural network models: (a) S-

Straight; (b) D-Straight; (c) porosity
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Table 5 RMSE errors of BP model before and after GA optimization

Error indicator

RMSE before optimization RMSE after optimization Ratio of change/%

Optimization effect

S-Straight 0.3256
D-Straight 0.2454
Porosity 0.4018

0.1553 -52.30 Significant improvement
0.2387 -2.73 Mild improvement
0.1229 —69.41 Significant improvement
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Table 6 Comprehensive comparison of error metrics between BP

and GA-BP neural network models

Error S-Straight D-Straight Porosity
metrics BP GA-BP BP GA-BP BP  GA-BP
MAE 0.2325 0.1361 0.1837 0.1821 0.3287 0.0938
RMSE 03256  0.1553  0.2454 0.2225 0.4018 0.1231
MSE 0.1060  0.0241 0.0602 0.0495 0.1614 0.0151
MAPE 109.71% 31.49% 32.05% 31.85% 13.33% 3.74%
R —0.4252  0.6757 —1.0205 —-0.5127 —3.5298 0.8183
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Fig.10 Pareto optimal solution sets of forming quality obtained by NSGA-II multi-objective optimization (a) and corresponding process

parameter combinations predicted by GA-BP model (b)
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Table 7 Pareto solution sets of forming quality and corresponding

process parameter combinations

TS/ WES/ S- D-

Sample /A . . . .
mm'min® mmin~  Straight Straight

Porosity/%

1 150 300 59 0.8351 0.4751 2.322
2 150 284 6.0 0.7263  0.446 2.394
3 150 270 59 0.5806  0.4709 2.451
4 150 246 4.9 0.2062  0.5259 2.823
5 150 228 49 0.1427  0.5288 2.885
6 151 270 6.0 0.5569  0.4594 2.454
7 151 270 59 0.5676  0.4802 2.444
8 151 229 4.9 0.137  0.5363 2.87
9 151 229 6.0 0.2547  0.5077 2.602
10 153 225 4.8 0.14 0.51 2.87
11 155 300 59 0.8015 0.5107 2.239
12 155 279 59 0.6248 0.5133 2.353
13 155 270 6.0 0.5073  0.4998 2.426
14 155 236 4.9 0.1146  0.5634 2.803
15 156 300 5.1 0.651  0.5734 2.35
16 156 300 6.0 0.7921  0.4969 2.246
17 156 288 6.0 0.7028  0.4981 2.307
18 156 284 6.0 0.6623  0.4997 2.33
19 156 246 4.9 0.1312  0.5641 2.757
20 157 300 5.9 0.786  0.5258 2.207
21 158 229 6.0 0.2791 0.5944 2.576
22 160 300 6.0 0.7604 0.53 2.185
23 161 300 59 0.7508  0.5569 2.144
24 161 256 4.9 0.1276  0.5858 2.667
25 165 284 6.0 0.5467 0.5886 2.233
26 172 284 5.7 0.4166 0.6746 2.137
27 172 269 59 0.3095 0.6952 2.265
28 172 269 6.0 0.3183  0.6859 2.279
29 172 256 4.9 0.0327  0.6492 2.591
30 175 300 5.4 0.4755 0.6419 2.108
31 176 267 4.9 0.041  0.6501 2.55
32 179 300 5.0 0.3143  0.5983 2.377
33 179 256 4.9 0.0092  0.6893 2.558
34 180 290 5.8 0.312 0.725 2.15
35 180 284 6.0 0.3467 0.7279 2.078
36 182 300 5.1 0.2856  0.6181 2.343
37 182 300 6.0 0.4864 0.7073 1.923
38 185 270 5.7 0.1642 0.7847 2216
39 186 270 5.5 0.0895 0.7588 2.33
40 187 300 59 0.4025 0.7413 1.906
41 189 300 5.0 0.1817  0.6367 2.428
42 190 300 6.0 0.3739 0.7616 1.886
43 190 294 5.0 0.1077  0.6582 2.462
44 190 294 6.0 03165 0.7775 1.935
45 190 288 5.8 02312  0.7815 2.038
46 190 288 6.0 0.2723  0.7935 1.981
47 190 279 59 0.2119  0.813 2.067
48 190 271 59 0.1991  0.833 2.12
49 190 270 53 0.0141  0.746 2.452
50 190 270 5.7 0.1357  0.8109 2218

B 11 B8 R 2 W AN — A A AR 1A

Fig.11 Macro-appearance (a) and binarized metallographic image (b)

of validation sample
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Table 8 Comparison between actual values and predicted values of forming quality indexes of validation samples and corresponding

errors
Sample S-Straight, y, D-Straight, y,  Porosity, y,/%  y, error/% ¥, error/% v, error/% Average errot/%
Predicted value 0.2712 0.5911 1.959
4.61 15.77% 6.23 8.89
Actual value 0.2843 0.5105 2.089

5 45 i

1) Pearson #H ¢ R K B, LI (D 5 W B A5 AE JE —
1 (S-Straight) & ARG, RIHE K 707 #4346 75 g R
S A RE ZE (TS 5 )2 (] B )& — F(M: (D-Straight) £
FHOG, B = TS 03 i FE 7 3 S0 FLIR R 2 i 5
1% 22 AR CWFS) P [R) I  , THY K PR FLBR %, WES #4 i1
DA R 5 o

) FHE T4 40 BP A Y, GA-BP A5 7 5 48 7 1%
% 1% BE ] — 3P (RMSE M 0.3256 & 2 0.1553, [% 1R
52.30%) Fl L B Z (RMSE M 0.4018 B& %2 0.1229, £ &
69.41%) I UM B2, {H = [A] B¥ 5 — S0 Tl o 35 A PR
(RMSE X F# 2.73%) , ARl T GA S5 58 7 X J it i 3
FEIE B HERE 77, 100 $8 R AN 2 B #0752 I B A
A RRRIEA -

3) ik NSGA-IT5 %45 A GA-BP #1148 W 2% (1R A
HARXT WAAM B T2 280317 2 B A 31531 50 41
Pareto R ARER , 42 H 4 AR S HE - LI 1 S 82 R
—HHEFE M e B RS EE BRI, L
P 70 S IR R ARRS B L S5 R, TESHULA (U=
179 A, TS=300 mm/min, WFS=5 m/min) A& % i 2 ) 155 7
fi b (S-Straight<0.4, D-Straight<0.6 , Porosity<2.5%) , i
DUAE 5 52 bR A 167 3501 2 K 8.89%, S0 IE 1 VR A A U 7
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Machine Learning-Based Forming Quality Prediction and Multi-objective Optimization
of Aluminum Alloy Thin-Walled Components in Wire Arc Additive Manufacturing

Peng Yiqi'?, Gao Yuefang’, Hua Tanzhi®, Zhang Sirui’, Zhao Yufan'?, Lin Xin"?
(1. State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an 710072, China)
(2. MIIT Key Laboratory of High Performance Additive Manufacturing and Innovative Design of Metal Structure,
Northwestern Polytechnical University, Xi’an 710072, China)
(3. School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an 710072, China)

Abstract: Wire arc additive manufacturing (WAAM) holds significant application value in the aerospace field, but the instability of heat input
leads to prominent issues such as poor geometric conformity and numerous internal defects in aluminum alloy thin-walled components. To address
the restrictions of traditional methods in multi-physics coupling optimization, this study proposed a data-driven solution by constructing a dataset
of process parameters (current, scanning speed and wire feed rate) and forming quality (path/interlayer wall thickness consistency and porosity). A
back propagation (BP) neural network model was established and optimized using the genetic algorithm (GA), combined with the non-dominated
sorting genetic algorithm II (NSGA-II) for multi-objective optimization. The results show that the optimized GA-BP model significantly improves
the prediction accuracy of path wall thickness consistency and porosity, but its optimization effect on interlayer wall thickness consistency
prediction is restricted. Four types of optimization strategies are proposed based on the 50 Pareto solution sets obtained through NSGA-II, and
validation tests indicate the model prediction error of 8.89%, accurately achieving the collaborative optimization of forming quality indicators.

Key words: wire arc additive manufacturing; machine learning; multi-objective optimization; aluminum alloy; forming quality
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