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摘 要：电弧增材制造（WAAM）在航空航天领域具有重要应用价值，但其热输入不稳定性导致铝合金薄壁构件几何符合

度差与内部缺陷多的问题突出。针对传统方法在多物理场耦合优化中的局限性，本研究提出数据驱动解决方案：通过构建工

艺参数（电流、扫描速率、送丝速率）与成形质量（路径/层间壁厚一致性、孔隙率）的数据集，建立反向传播（BP）神经

网络模型，并融合遗传算法（GA）优化原始模型，结合第二代非支配排序遗传算法（NSGA-II）进行成形质量多目标寻优。

结果表明：优化后的GA-BP模型显著提升了沿路径壁厚一致性和孔隙率的预测精度，但层间壁厚一致性预测优化效果有限。

通过NSGA-II获得的50组Pareto解集提出4类优化策略，验证试验结果表明模型预测误差为8.89%，准确地实现了成形质量

指标的协同优化。
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1　引 言

电弧增材制造（wire arc additive manufacturing，

WAAM）作为一种金属增材制造技术，近年来在航空航

天、汽车、船舶以及能源领域引起了广泛关注并得到了广

泛应用[1–3]。与传统制造工艺相比，WAAM具有较高的材

料利用率、较短的生产周期以及较低的生产成本，尤其适

用于钛合金、铝合金、钢材等金属材料的中低复杂度零部

件制造[4–6]。然而，由于WAAM工艺中存在较大且不稳

定的热输入，每一层熔覆层在加热和冷却过程中经历复

杂的热历史，使得熔覆层的几何形状难以稳定控制，同时

也为优化工艺参数与抑制缺陷的形成提供了重要的改进

空间[7–8]。在这些挑战中，用于航空航天轻量化支撑结构

的铝合金薄壁墙形态及其缺陷控制尤为困难，由于热输

入的不稳定性，熔道几何形状的不稳定性会随着每一层

的叠加而逐渐累积，最终导致薄壁墙的成形质量难以保

障[9–10]。此外，薄壁墙对工艺参数的敏感性较高，热输入、

送丝速率等参数的微小变化都会直接影响其几何形状和

力学性能。在增材制造过程中，稍有不当的热输入或工

艺调节便可能导致熔池的不稳定、构件形变与裂纹等缺

陷，从而影响薄壁墙的力学性能和使用寿命[11–12]。传统

的工艺参数优化方法主要依赖经验性调整或试错法，这

些方法不仅周期长、成本高，而且在面对复杂的工艺要求

时，往往难以实现高效优化。此外，WAAM过程涉及多

个极端物理场的相互作用，使得这些传统方法难以有效

应对复杂的多目标优化需求[13–14]。

为克服现有研究的局限性，大量研究开始探索基于

数据驱动的机器学习方法以优化电弧增材制造工艺。机

器学习能够从大量实验数据中提取潜在规律，建立精确

的预测模型，从而快速、低成本地优化工艺参数[15–17]。同

时，结合多目标优化算法，可以在考虑多个成形优化目标

的同时，平衡不同目标之间的权重，实现更加精准的工艺

调节效果[18]。例如，Oh等人[19]通过支持向量机（SVM）模

型优化WAAM工艺参数，显著降低了起弧区与稳定区之

间的几何形态差异；Le等人[20]研究了316L不锈钢在电弧

增材制造中的单道工艺参数优化，采用贝叶斯神经网络

模型预测焊缝几何特性，并结合遗传算法和TOPSIS方

法进行多目标优化，显著提升了焊缝的几何质量。此外，

Le等人[21]进一步利用WAAM热循环有限元（FE）模型，

基于不同热输入水平下的热模拟数据，对前馈神经网络

模型（FFNN-SM）进行了训练和验证，该模型能够准确、

快速地预测温度演变。郭灿等人[22]进一步应用机器学习

收稿日期：2025-03-21
基金项目：陕西省教育厅服务地方专项计划（24JC086）
作者简介：彭逸琦，男，2002年生，博士生，西北工业大学凝固技术全国重点实验室，陕西  西安  710072，E-mail： yiqipeng@mail.nwpu.edu.cn

https://doi.org/10.12442/j.issn.1002-185X.20250150



第 55 卷 稀有金属材料与工程

方法研究了镁合金电弧增材制造中的多层成形质量，分

析了不同工艺参数对多层成形质量的影响，并通过优化

确定了最佳工艺参数范围。目前，现有研究受限于有限

样本数据，难以有效训练复杂模型，导致电弧增材制造薄

壁构件成形质量预测精度不足，且无法满足复杂服役性

能条件下构件成形质量多目标优化需求。

本研究提出了一种铝合金电弧增材制造薄壁构件成

形质量多目标优化方法。通过建立成形质量遗传算法-

反向传播（GA-BP）预测模型，采用第二代非支配排序遗

传算法（NSGA-II）对工艺参数进行多目标优化。验证实

验模型具有良好的预测精度，优化工艺参数显著提升了

成形质量。该方法为高精度WAAM制造提供了有效解

决方案。

2　实 验

在电弧增材制造铝合金薄壁墙成形试验中，基板选

用2024铝合金，长宽高尺寸为100 mm×100 mm×10 mm，

焊丝选用 2219铝合金，其直径为 1.6 mm，基板与焊丝的

具体成分见表1。

电弧增材制造实验中，使用同轴送丝设备进行沉积。

实验过程中采用高纯氩气作为保护气体，维持低氧惰性

环境，以提高焊接质量和稳定性。实验前固定基板在沉

积平台上，预热至200 ℃。确保系统正常运行后，接入保

护气体。实验开始时，焊机和送丝喷头沿基板表面同轴

直线运动，沉积丝材，每道沉积层预设长度为 100 mm。

完成一层沉积后，关闭预热装置，为了兼顾沉积效率与成

形质量，保证层间冷却2 min，并手动调整 z轴抬升量，确

保层间熔合良好。

通过路径和层间壁厚均匀性评估薄壁墙的几何形态

稳定性（图 1a、1b）。沿路径等距测量 10个位置壁厚，每

个点独立测量 3次，计算平均壁厚标准差来评估路径方

向壁厚均匀性（S-Straight）；层间壁厚均匀性（D-Straight）

则通过制备 3个代表性横截面试样金相，沿沉积方向等

距选取10个测量点，同样计算3组数据平均标准差进行

评价。路径方向和层间壁厚均匀性的标准差计算方法如

式（1）所示。

S =
∑i = 1

n ( )Li -
-
L

2

n - 1
（1）

式中 S表示样本数据标准差，n表示样本数量，Li样本测

量长度，L̄表示样本测量长度平均值。

针对内部缺陷特征，重点量化构件的孔隙率（图

1c）。采用光学显微镜观察横截面试样金相表面，结合图

像二值化处理精确计算3组试样孔隙率均值ϕ，计算方式

如式（2）所示。该多指标评价体系通过重复测量确保数

据可靠性以系统性评估试样的内部质量和成形稳定性。

表1  2024铝合金基板与2219铝合金焊丝的化学成分

Table 1  Chemical composition of 2024 aluminum alloy substrate and 2219 aluminum alloy welding wire (wt%)

Material

2024 substrate

2219 welding wire

Cu

4.52

5.97

Mg

1.63

0.052

Si

0.50

0.028

Mn

0.35

0.31

Fe

0.50

0.116

Zr

＜0.01

0.20

Ti

0.15

0.12

Zn

0.25

＜0.01
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图1  薄壁墙成形质量测试示意图

Fig.1  Schematic diagrams of thin-wall formation quality testing: (a) straightness of wall thickness along the scanning direction; (b) straightness of 

wall thickness along the deposition direction; (c) porosity
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ϕ =
Ap

A t

× 100% （2）

式中Ap表示孔隙面积，A t表示金相总面积。

本实验选取 3种电弧增材制造关键工艺参数：电流

（current，I）、扫描速率（travel speed，TS）和送丝速率

（wire feed speed，WFS）作为机器学习模型的输入，采用

三因素三水平全因子试验设计，共 27组工艺参数组合，

具体参数范围如表2所示。

3　机器学习模型

3.1　GA-BP神经网络构建

本研究采用单隐含层BP神经网络构建预测模型，输

入层（电流、扫描速率、送丝速率）与输出层（路径/层间壁

厚标准差及孔隙率）均为 3节点，针对 27组试验数据按  

8:2比例划分训练集与测试集。通过经验公式确定隐含

层节点数范围为4~12，经节点数遍历与精度评估后选定

5节点，形成3-5-3网络结构（图2）。模型采用 tansig函数

增强非线性映射，输出层使用purelin函数保持连续预测

特性，结合 Levenberg-Marquardt 算法加速收敛，并通过

[0,1]归一化抑制噪声干扰。针对训练集样本少的问题，

本研究采用5折交叉验证方式，以提升模型的泛化能力，

缓解小样本条件下模型拟合的过拟合风险。

l = n + m + a （3）

式中，n为输入层节点数，m为输出层节点数，a为1~10的

任意实数。

为解决传统BP模型易陷局部最优问题，引入遗传算

法构建GA-BP混合模型[23]。采用实数编码生成 52维染

色体（对应网络权阈值），设置50种群规模迭代100次，以

训练集均方根误差（RMSE）为适应度基准，通过0.2交叉

概率和间隔 3代动态变异策略平衡全局搜索与局部优

化。该框架通过遗传算法全局粗调网络参数，再经反向

传播精修，形成双阶段优化机制。通过平均绝对误差

（MAE）、RMSE、均方误差（MSE）、平均绝对百分比误差

（MAPE）和拟合优度（R2）这5类指标综合评价模型精度，

为后续多目标优化奠定基础[17]。

3.2　NSGA-II多目标优化算法构建

针对电弧增材制造过程中工艺参数热输入引发的多

目标优化问题（大热输入虽可降低孔隙率但易导致层间

塌陷，小热输入虽能抑制熔道铺展却会恶化壁厚均匀

性），建立了基于电流、扫描速率和送丝速率 3个决策变

量的多目标优化模型，优化目标包括路径/层间壁厚标准

差及孔隙率。研究采用NSGA-II，充分利用其分层非支

配排序机制、精英保留策略和基于拥挤距离的多样性保

持方法，将GA-BP神经网络作为适应度函数嵌入优化框

架，构建了NSGA-II算法结合GA-BP神经网络的混合模

型（图3）。模型通过迭代搜索生成Pareto最优解集，解析

工艺参数与质量目标的非线性映射关系，结合多目标权

重配比实现动态权衡优化，最终输出满足相应优化策略

的工艺参数配置方案。

4　结果与分析

4.1　工艺参数与成形质量相关性

经过对薄壁墙试样的沿路径宽度测量与对金相试样

的层间宽度与孔隙率测量后，所获数据集如表3所示。

基于薄壁试样测量数据，Pearson相关性分析（图 4）

揭示成形质量与工艺参数间的非线性耦合关系。图中相

关系数 r=1表示完全正相关，r=–1表示完全负相关，|r|值

越大说明相关性越强，越接近 0则表示相关性越弱。结

果显示，沿路径方向壁厚标准差主要与电流呈负相关（r=

–0.34）；沉积方向壁厚标准差与扫描速率呈显著负相关

（r=–0.52），同时与电流呈正相关（r=0.37）。孔隙率主要

受电流与送丝速率的影响，其中电流增大有助于降低孔

隙缺陷（r=–0.29），而送丝速率提升加剧孔隙率（r=0.25）。

工艺参数对成形质量的影响表现出复杂的耦合关系，单

一参数的优化难以实现整体成形质量的全面提升，需要

多目标优化参数协同优化成形质量。

因此，扫描速率对沉积方向成形质量具有显著调控

表2  全因子试验因素水平表

Table 2  Factor-level table for full-factorial experiment 

A

B

C

Parameter

I/A

TS/mm·min–1

WFS/m·min–1

Level-1

150

200

4

Level-2

170

250

5

Level-3

190

300

6

图2  单隐含层BP神经网络结构示意图

Fig.2  Schematic diagram of the single-hidden-layer BP neural network structure
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作用，而电流对孔隙率与扫描方向精度呈反向调控作用，

送丝速率则主要影响孔隙率。工艺参数与成形质量之间

表现出非线性、弱相关的复杂耦合特性，传统线性模型难

以准确表征其内在关联。这一结论为后续构建GA-BP

模型提供理论依据，表明通过机器学习方法能够有效挖

掘工艺参数与成形质量之间的隐含非线性映射关系。

4.2　基于GA优化的BP神经网络预测模型性能

基于 20组训练样本的建模结果表明，BP神经网络

在沿路径壁厚一致性、层间壁厚一致性及孔隙率预测中，

训练集RMSE分别为 0.1309、0.1098和 0.2273（图 5），根

据回归拟合图（图 6）反映BP模型测试集预测性能显著

劣化，其整体回归系数R值仅 0.74346，测试集R值更跌

至0.61468，暴露出传统模型在复杂非线性关系建模中的

缺陷，而BP模型通过GA算法优化后，3种工艺参数的

RMSE分别降低至 0.1018、0.059和 0.0232（图 5），验证了

GA算法在小样本条件下对于复杂工艺关系下对预测模

型优化的能力。

GA-BP模型中所选取的训练集数据与测试集数据

与BP神经网络模型所选取的相同。图 7所示的适应度

迭代曲线揭示了遗传算法在参数空间搜索中的动态特

性。当以BP神经网络权值阈值作为适应度函数时，算法

的全局搜索能力通过交叉变异操作逐步逼近最优解。当

种群多样性降低时，GA算法通过变异因子重新引入新

特征，最终在第 173代收敛至全局最优适应度 0.593，较

图3  NSGA-Ⅱ算法结合GA-BP神经网络的混合模型流程图

Fig.3  Hybrid model flowchart of NSGA-Ⅱ combined with GA-BP neural network

表3  全因子试验结果

Table 3  Full-factorial experiment results

Sample

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

I/A

170

170

170

170

170

150

190

170

170

170

170

190

190

150

150

150

190

150

190

190

190

190

190

150

150

150

150

TS/

mm·min-1

300

300

300

250

200

300

300

200

200

250

250

300

300

300

300

200

200

250

250

200

200

250

250

200

200

250

250

WFS/  

m·min-1

5

4

6

5

5

5

5

6

4

6

4

6

4

6

4

5

5

5

5

6

4

6

4

6

4

6

4

S-Straight

0.4595

0.3561

0.2588

0.0676

0.3032

0.4151

0.2612

0.8484

0.2588

0.1401

0.2367

0.1314

0.2206

0.9220

0.8277

0.1425

0.4916

0.1610

0.2521

0.2824

0.2902

0.1755

0.1829

0.3597

0.2607

0.4519

0.3281

D-Straight

0.4727

0.8728

0.6525

0.6290

0.7480

0.5947

0.5171

1.1099

0.7914

0.8249

0.7553

0.6969

0.5039

0.2394

0.6317

0.6850

0.8520

0.5122

0.6768

0.7263

0.7098

0.8066

0.6977

0.4336

0.8007

0.3849

0.5266

Porosity/%

1.443

0.738

1.613

2.136

1.144

1.872

1.868

2.009

1.162

1.729

1.710

1.102

1.005

2.632

1.547

0.794

1.536

1.790

0.845

1.315

0.632

1.879

1.555

0.906

2.151

1.566

1.096
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图4  成形质量与工艺参数的Pearson相关系数

Fig.4  Pearson correlation coefficients between forming quality and process parameters: (a) S-Straight; (b) D-Straight; (c) porosity
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Fig.5  Comparison between output values and sample values of three forming quality parameters from BP and GA-BP neural network training 

sets: (a) S-Straight; (b) D-Straight； (c) porosity 
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初始值降低约4.7%。

进一步对比BP模型与GA-BP模型迭代过程（图8），

BP模型训练集与测试集分别在 8轮和 2轮后终止优化，

过早收敛现象揭示了两大问题：其一，20组样本的数据

规模不足以支撑简单BP神经网络参数的有效学习，模型

在未充分探索解空间时即陷入局部最优；其二，训练过程

中验证误差未设置早停机制，导致模型在初始阶段即丧

失优化动力。对比显示，GA-BP神经网络在训练集第11
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图8  BP神经网络模型和GA-BP神经网络模型的迭代误差示意图

Fig.8  Schematic diagram of model iteration error of BP (a) and GA-

BP (b) neural network models 
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Fig.6  Regression fitting plots of predicted versus target values of BP neural network model: (a) training, (b) validation, (c) test, and (d) total 
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轮完成收敛，而测试集在第5轮即达到最小均方误差，表

明遗传算法优化加速了模型收敛过程，其定向搜索机制

能有效规避鞍点陷阱。

BP神经网络的“浅层学习”特性直接反映在测试集

预测性能的严重劣化，即沿路径壁厚一致性、层间壁厚一

致性及孔隙率的测试RMSE分别飙升至 0.3256、0.2454

和 0.4018（图 9），较训练误差增长 77%~149%，尤其是孔

隙率预测误差突破 0.4，表明模型对熔池动态行为、气体

逸出路径等关键物理机制的映射存在系统性偏差。将7

组数据导入GA-BP模型进行测试，验证GA算法对BP模

型的预测优化功能，表 4展示GA算法优化后模型预测

值、未优化模型预测值与样本值的对比与误差。GA-BP

模型对沿路径方向壁厚一致性、沉积方向壁厚一致性、孔

隙率预测分别如图 9a、9b 和 9c 所示，RMSE 分别为

0.1553、0.2387、0.1229。

综合表5显示各输出变量预测值RMSE对比可以发

现，GA-BP模型的工艺参数预测优化中，3种成形质量指

标预测准确度均得到优化，沿路径壁厚一致性和孔隙率

的预测效果显著提升，其中沿路径壁厚一致性RMSE从

0.3256 降至 0.1553，变化率–52.30%；孔隙率 RMSE 从

0.4018降至 0.1229，变化率–69.41%。相比之下，层间壁

厚一致性的预测效果提升有限，RMSE 从 0.2454 降至

0.2387，变化率–2.73%。

误差指标综合分析（表 6）进一步验证了GA算法的

优化功能：GA-BP模型在孔隙率和沿路径壁厚一致性预

测中的显著改进，反映了该模型对WAAM过程中熔池流

动特性的精确建模能力。从物理机制来看，孔隙率主要

受熔池湍流强度控制，而沿路径壁厚一致性则与熔池流

动的铺展能力和稳定性密切相关，这 2个指标都与熔池

流动特性存在直接关联。相比之下，层间壁厚一致性的

预测精度提升有限，这一现象揭示了当前模型在表征热

流场耦合效应方面的局限性。具体而言，层间一致性不

仅取决于单层熔池的流动行为，更受到逐层沉积过程中

热积累效应的显著影响，这种跨时间尺度的热-流耦合过

程超出了当前模型对熔池流动特性的单一表征范围。综

合而言，GA算法的优化能力主要体现在提升对熔池流

动特征的捕捉能力，而对于与热历史密切相关的层间一

致性内在机理提取能力不足，限制了该模型在该指标上

的预测能力。

尽管层间壁厚一致性预测精度提升效果有限，但

表4  BP及GA-BP模型测试集预测结果

Table 4  Prediction results of test sets of BP and GA-BP models 

Group

1

5

8

10

15

20

22

S-Straight

True

0.459

0.303

0.848

0.140

0.828

0.282

0.176

BP

0.305

0.357

0.390

0.272

0.140

0.299

0.300

GA-

BP

0.344

0.298

0.625

0.320

0.928

0.380

0.408

D-Straight

True

0.472

0.748

1.109

0.824

0.631

0.726

0.806

BP

0.519

0.708

0.606

0.541

0.557

0.660

0.535

GA-

BP

0.389

0.730

0.619

0.848

0.349

0.982

0.723

Porosity

True

2.36

2.887

2.36

2.414

2.581

2.721

3.187

BP

2.383

2.308

2.616

2.339

2.877

2.358
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BP
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图9  BP与GA-BP神经网络模型测试集预测值和样本值对比

Fig. 9  Comparison between predicted values and sample values of testing sets from BP and GA-BP neural network models: (a) S-   

             Straight; (b) D-Straight; (c) porosity

表5  GA算法优化前后BP模型RMSE误差

Table 5  RMSE errors of BP model before and after GA optimization

Error indicator

S-Straight

D-Straight

Porosity

RMSE before optimization

0.3256

0.2454

0.4018

RMSE after optimization

0.1553

0.2387

0.1229

Ratio of change/%

–52.30

–2.73

–69.41

Optimization effect

Significant improvement

Mild improvement

Significant improvement
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GA-BP模型综合性能优于原始BP模型，这证明了GA遗

传算法对BP神经网络模型的优化效果。

4.3　NSGA-II成形质量多目标优化与验证结果

如图10所示，利用NSGA-Ⅱ算法经过200代遗传迭

代寻优后获得的 50组成形质量Pareto最优解集（表 7），

Pareto前沿的分布特征表明，其近似平面的散点分布形

态反映了各质量指标间存在显著的协同竞争机制。

根据实际应用需求，提出4类差异化优化策略：

（1）孔隙率主导型（图 10黄球）：需维持高能场条件

（扫描速率≥285 mm/min，送丝速率≥5.9 m/min，电流≥
187 A），通过增强熔池湍流效应促进气体逸出，孔隙率可

降低至2%以下。

（2）层间一致性主导型（图 10青球）：宜采用中高扫

速（270~300 mm/min）配合较低电流（150~160 A），通过

减小热输入可有效避免热积累引起的塌陷，层间壁厚标

准差可以控制在0.5以下。

（3）沿路径一致性主导型（图 10蓝球）：需降低送丝

速率至4.9~5.3 m/min以稳定熔池铺展，配合较高的热输

入（I/TS>0.63）形成准稳态热循环，路径壁厚标准差可以

减少至0.13。

（4）多目标均衡型（图 10红球）：需要在较高送丝速

率和中等扫速与中等电流相互搭配，通过热累积-耗散平

衡实现质量指标协同优化。

进一步分析各优化目标制约关系可以分析出：在孔

隙率约束域（＜2%），路径与层间壁厚一致性呈现显著负

相关，其物理本质在于低热输入导致首层熔池不连续，形

成离散焊珠结构，虽有利于层间一致性，但路径方向材料

堆叠均匀性下降；在层间一致性约束域（＜0.5），孔隙率

与路径壁厚一致性存在极为复杂的作用关系，存在一定

工艺窗口可以在保证层间壁厚一致性的同时，使孔隙率

和路径壁厚一致性均优；在沿路径一致性约束域（＜

0.13），层间一致性与孔隙率的负向相关源于高热输入促

进熔池产生湍流效应促使气体溢出，而高热积累促使后

续沉积层熔融塌陷降低层间一致性。

为验证模型的多目标优化能力与精度，从50组工艺

参数组合中选取优化策略为多目标均衡型，且保证沿路

径壁厚一致性优于 0.4，层间壁厚一致性优于 0.6和孔隙

率优于2.5%，3种优化策略尽可能均衡，得到1组工艺参

数组合（I=179 A，TS=300 mm/min，WFS=5 m/min）。在

其余工艺条件保持不变的情况下，利用所求得优化后的

工艺参数组合制取验证试样，图11为验证试样宏观外形

与二值化金相，优化参数下可以保证薄壁墙兼具良好的

沿路径壁厚一致性、层间壁厚一致性和孔隙率，模型具有

较好的参数优化能力。

此外，表 8展示了验证试样的实验样本值与模型预

测值的对比结果，预测值与实际测量值基本一致，其中沿

路径壁厚一致性（S-Straight, y1）和层间壁厚一致性（D-

Straight, y2）的误差分别为 4.61%和 15.77%，孔隙率（y3）

误差为 6.23%，平均误差约为 8.89%。该结果表明，所建

模型在多目标优化中不仅能够平衡各项指标，同时具备

较高的预测精度和可靠性，为工艺参数优化提供了有力

的支持。
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图10  NSGA-II多目标寻优所得成形质量Pareto最优解集及GA-BP模型预测对应工艺参数组合

Fig.10  Pareto optimal solution sets of forming quality obtained by NSGA-II multi-objective optimization (a) and corresponding process 

parameter combinations predicted by GA-BP model (b)

表6  BP与GA-BP神经网络模型误差指标综合对比

Table 6  Comprehensive comparison of error metrics between BP 

and GA-BP neural network models

Error 

metrics

MAE

RMSE

MSE

MAPE

R²

S-Straight

BP

0.2325

0.3256

0.1060

109.71%

–0.4252

GA-BP

0.1361

0.1553

0.0241

31.49%

0.6757

D-Straight

BP

0.1837

0.2454

0.0602

32.05%

–1.0205

GA-BP

0.1821

0.2225

0.0495

31.85%

–0.5127

Porosity

BP

0.3287

0.4018

0.1614

13.33%

–3.5298

GA-BP

0.0938

0.1231

0.0151

3.74%

0.8183
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4.4　模型误差分析与改进

基于误差溯源分析，本研究构建的NSGA-Ⅱ算法结

合GA-BP神经网络的混合模型主要误差来源包括测量

系统误差、数据驱动模型局限性以及工艺过程扰动因素。

在测量系统方面，成形质量多维度测量存在系统性误差，

其中沿路径和层间的几何一致性评价指标尤为显著。传

统接触式测量方法在精确度和全面性方面存在不足，建

议后续研究引入激光三维轮廓扫描技术，以实现成形件

表面形貌的精确量化表征。对于孔隙率测量，当前基于

金相截面孔洞面积的方法具有局部偶然性，可采用阿基

米德排水法结合X射线扫描技术，实现试样体积内孔隙

分布的三维定量评估。

在数据驱动建模方面，本研究受限于27组单壁墙实

验样本的小样本约束，虽然已经采用5折交叉验证，仍存

在欠拟合风险与过拟合倾向。为提升模型在有限数据条

件下的泛化能力。未来，可在GA-BP神经网络架构中引

入物理信息神经网络（PINN）框架，通过嵌入WAAM控

制方程，构建具有物理约束的损失函数，同时引入长短期

记忆网络（LSTM）捕捉热历史的时序依赖性信息，从而

构建多尺度耦合的智能预测模型。同时，结合数据增强

方法增加可信样本数目、采用贝叶斯优化框架进行超参

数自适应调整，并引入迁移学习策略利用相关工艺数据

库进行预训练，进一步强化模型的物理可解释性、预测准

确性与泛化能力。

在工艺层面上，电弧增材制造设备存在较多人为因

素和设备因素对试验结果扰动，如喷头距离、沉积区域温

度、电流稳定性和送丝均匀性等，使得获取的样本数据存

在一定的偏差。为提高电弧增材制造的工艺稳定性，需

提升设备自动化程度。通过高精度传感器实时监测喷头

距离、熔池温度等关键参数，结合智能控制算法将机器学

习算法与设备集成，实现动态调整工艺参数，利用数字化

平台实现实时监控与智能决策，减少人为误差，确保成形

质量一致性。

1010 m mm

aa bb

11 mm mm

Validation sampleValidation sample

图11  验证试样的宏观外形和二值化金相图

Fig.11  Macro-appearance (a) and binarized metallographic image (b) 

of validation sample

表7  成形质量Pareto解集及其对应工艺参数组合

Table 7  Pareto solution sets of forming quality and corresponding     

               process parameter combinations

Sample

1

2

3

4

5

6

7

8
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12

13
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20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

I/A

150

150

150

150

150

151

151

151

151

153

155

155

155

155

156

156

156

156

156

157

158

160

161

161

165

172

172

172

172

175

176

179

179

180

180

182

182

185

186

187

189

190

190

190

190

190

190

190

190

190

TS/

mm·min-1

300

284

270

246

228

270

270

229

229

225

300

279

270

236

300

300

288

284

246

300

229

300

300

256

284

284

269

269

256

300

267

300

256

290

284

300

300

270

270

300

300

300

294

294

288

288

279

271

270

270

WFS/   

m·min-1

5.9

6.0

5.9

4.9

4.9

6.0

5.9

4.9

6.0

4.8

5.9

5.9

6.0

4.9

5.1

6.0

6.0

6.0

4.9

5.9

6.0

6.0

5.9

4.9

6.0

5.7

5.9

6.0

4.9

5.4

4.9

5.0

4.9

5.8

6.0

5.1

6.0

5.7

5.5

5.9

5.0

6.0

5.0

6.0

5.8

6.0

5.9

5.9

5.3

5.7

S-

Straight

0.8351

0.7263

0.5806

0.2062

0.1427

0.5569

0.5676

0.137

0.2547

0.14

0.8015

0.6248

0.5073

0.1146

0.651

0.7921

0.7028

0.6623

0.1312

0.786

0.2791

0.7604

0.7508

0.1276

0.5467

0.4166

0.3095

0.3183

0.0327

0.4755

0.041

0.3143

0.0092

0.312

0.3467

0.2856

0.4864

0.1642

0.0895

0.4025

0.1817

0.3739

0.1077

0.3165

0.2312

0.2723

0.2119

0.1991

0.0141

0.1357

D-

Straight

0.4751

0.446

0.4709

0.5259

0.5288

0.4594

0.4802

0.5363

0.5077

0.51

0.5107

0.5133

0.4998

0.5634

0.5734

0.4969

0.4981

0.4997

0.5641

0.5258

0.5944

0.53

0.5569

0.5858

0.5886

0.6746

0.6952

0.6859

0.6492

0.6419

0.6501

0.5983

0.6893

0.725

0.7279

0.6181

0.7073

0.7847

0.7588

0.7413

0.6367

0.7616

0.6582

0.7775

0.7815

0.7935

0.813

0.833

0.746

0.8109

Porosity/%

2.322

2.394

2.451

2.823

2.885

2.454

2.444

2.87

2.602

2.87

2.239

2.353

2.426

2.803

2.35

2.246

2.307

2.33

2.757

2.207

2.576

2.185

2.144

2.667

2.233

2.137

2.265

2.279

2.591

2.108

2.55

2.377

2.558

2.15

2.078

2.343

1.923

2.216

2.33

1.906

2.428

1.886

2.462

1.935

2.038

1.981

2.067

2.12

2.452

2.218
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5　结 论

1）Pearson相关系数表明，电流（I）与沿路径壁厚一

致性（S-Straight）呈负相关，即增大 I可抑制扫描方向尺

寸波动；扫描速率（TS）与层间壁厚一致性（D-Straight）负

相关，即提高TS改善高度方向均匀性；孔隙率受电流与

送丝速率（WFS）协同调控，I增大降低孔隙率，WFS增加

则加剧缺陷。

2）相较于传统BP模型，GA-BP模型显著提升了沿

路径壁厚一致性（RMSE 从 0.3256 降至 0.1553，降幅

52.30%）和孔隙率（RMSE 从 0.4018 降至 0.1229，降幅

69.41%）的预测精度，但层间壁厚一致性预测改善有限

（RMSE仅降2.73%），归因于GA算法增强了对熔池流动

特性的捕捉能力，而对热累积效应与层间热历史的动态

耦合关系表征不足。

3）通过NSGA-Ⅱ算法结合GA-BP神经网络的混合

模型对WAAM成形工艺参数进行多目标寻优得到50组

Pareto最优解集，提出4类优化策略：孔隙率主导型、层间

一致性主导型、路径一致性主导型及多目标均衡型。以

均衡型策略验证模型精度，结果表明，工艺参数组合（I=

179 A，TS=300 mm/min，WFS=5 m/min）能够满足均衡型

指标（S-Straight<0.4，D-Straight<0.6，Porosity<2.5%），预

测值与实际值的平均误差为 8.89%，验证了混合模型在

多目标优化中的有效性与准确性。
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表8  验证试样在各成形质量指标上的实际值与预测值对比及其误差

Table 8  Comparison between actual values and predicted values of forming quality indexes of validation samples and corresponding 

errors

Sample

Predicted value

Actual value

S-Straight, y1

0.2712

0.2843

D-Straight, y2

0.5911

0.5105

Porosity, y3/%

1.959

2.089

y1 error/%

4.61

y2 error/%

15.77%

y3 error/%

6.23

Average error/%

8.89
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Machine Learning-Based Forming Quality Prediction and Multi-objective Optimization 

of Aluminum Alloy Thin-Walled Components in Wire Arc Additive Manufacturing

Peng Yiqi1,2, Gao Yuefang3, Hua Tanzhi3, Zhang Sirui3, Zhao Yufan1,2, Lin Xin1,2

(1. State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an 710072, China)

(2. MIIT Key Laboratory of High Performance Additive Manufacturing and Innovative Design of Metal Structure,        

Northwestern Polytechnical University, Xi’an 710072, China)

(3. School of Materials Science and Engineering, Northwestern Polytechnical University, Xi’an 710072, China)

Abstract: Wire arc additive manufacturing (WAAM) holds significant application value in the aerospace field, but the instability of heat input 

leads to prominent issues such as poor geometric conformity and numerous internal defects in aluminum alloy thin-walled components. To address 

the restrictions of traditional methods in multi-physics coupling optimization, this study proposed a data-driven solution by constructing a dataset 

of process parameters (current, scanning speed and wire feed rate) and forming quality (path/interlayer wall thickness consistency and porosity). A  

back propagation (BP) neural network model was established and optimized using the genetic algorithm (GA), combined with the non-dominated 

sorting genetic algorithm II (NSGA-II) for multi-objective optimization. The results show that the optimized GA-BP model significantly improves 

the prediction accuracy of path wall thickness consistency and porosity, but its optimization effect on interlayer wall thickness consistency 

prediction is restricted. Four types of optimization strategies are proposed based on the 50 Pareto solution sets obtained through NSGA-II, and 

validation tests indicate the model prediction error of 8.89%, accurately achieving the collaborative optimization of forming quality indicators.

Key words: wire arc additive manufacturing; machine learning; multi-objective optimization; aluminum alloy; forming quality
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