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Fig.1 Schematic diagrams of additive manufacturing: (a) SLM"* and
(b) EBM™
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Table 1 Mechanical properties of additively manufactured porous tantalum with different pore units

Additive

Pore unit manufacturing Pore size/um Porosity/% Compressive Elastic modulus/GPa Ref.
strength/MPa

process
Cubic lattice SLM 500 79.7+0.2 12.7+0.6 1.22+0.07 [9]
Cubic lattice SLM 362.4 64.6 40.5 1.5 [12]
Cubic lattice SLM 500.3 75.2 28.1 1.1 [12]
Cubic lattice SLM 702.6 85.3 17.6 0.7 [12]
Cubic lattice EBM 1655 82.06 14.9 0.59 [16]
Trabecular SLM - 60 59.5 3.340.3 [19]
Trabecular SLM 542 70.1 33.240.4 34+0.2 [19]
Trabecular SLM - 80 14.2+1 1.5+0.4 [19]
Trabecular SLM 583.6 64.8 35.7 3.0 [20]
Trabecular SLM 779.8 75.3 19.5 2.2 [20]
Trabecular SLM 986.3 84.6 11.9 1.1 [20]
Trabecular SLM - (60) 59.5 33 [21]
Trabecular SLM 542 70 33.2 3 [21]
Trabecular SLM - (80) 14.2 1.5 [21]
RDOD SLM 500 79.7 12.7 1.22 [9]
RDOD SLM 600.3 65.3 323 4.5 [22]
RDOD SLM 818.6 74.8 14.5 2.0 [22]
RDOD SLM 1153.2 85.4 5.8 0.6 [22]
RDOD SLM (400) (70) 444 1.78 [23]
RDOD EBM - (75) 23.98 - [8]
RDOD EBM - (80) 19.48 - [8]
RDOD EBM - (85) 6.78 - [8]
RDOD EBM ~400 ~83.5 3.5~5 - [24]
RDOD EBM - 69-77.8 6.9~17.5 0.41-0.83 [19]
RDOD-35.3° EBM 324 70.71 17.7 0.97 [16]
RDOD-40° EBM 359 71.13 20.66 1 [16]
RDOD-43° EBM 368 70.6 25.04 1.43 [16]
RDOD-VG EBM - 73.1 20.3 0.85 [25]
RDOD-PG EBM - 73.0 17.4 0.74 [25]
Diamond SLM (400) (70) 48.16 2.26 [21]
bee SLM 390 80 9.83 0.59 [26]
ISS SLM 350 79 21.04 0.63 [26]
IABT SLM 340 77 23.69 1.34 [26]
Gyroid strut-U SLM 740 (15) 18.8 1.5 [27]
Gyroid strut-Y SLM 820-650 (20-10) 222 2.0 [27]
Gyroid strut-Z SLM - (20-10) 8.6 1.1 [27]
Gyroid strut-G SLM - 80-75 14.51 0.62 [28]

Note: designed value is in brackets, and actual value is out of brackets; RDOD—rhombic dodecahedron; RDOD-VG—rhombic dodecahedron-vertical
gradient; RDOD-PG—rhombic dodecahedron-parallel gradient; bcc—body centred cube; ISS—imitation saddle surface; IABT—imitation arch bridge

telescopic
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Fig.2 Three-dimensional models and digital photographs (a), SEM images (b,~b,), and optical micrographs (b,—b,) of additively manufactured

multi-porous tantalum sample with Dodecahedral structure™™: (a) dodecahedral unit and porous structure, (b,—b,) the top view at different

magnifications, and (b,~b,) a cross section at different magnifications
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Fig.3 Three-dimensional models (a), digital and optical micrographs (b), and SEM images (c) of the fracture surface of an additively

manufactured trabecular porous tantalum unit-cell specimen’”
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Fig.4 Three-dimensional model of cubic lattice unit and porous structure (a), digital and micrographs (b), and SEM images (c) of the fracture

surface of an additively manufactured porous tantalum specimen with cubic lattice unit-cell structure
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Fig.6 Finite-element-simulation stress cloud maps of additively manufactured porous tantalum with various pore unit structures: (a) trabecular

structures with porosity of 65%, 75%, and 85%""; (b) cubic lattice structures with porosity of 65%, 75%, and 85%!"*; and (c) rhombic

dodecahedron structures with porosity of 65%, 75%, and 85%
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Fig.7 Finite-element-simulation stress cloud maps of additively manufactured porous tantalum with gradient pore structures: (a) RDOD-VG and
RDOD-PG™; (b) topology optimized structure of bee, ISS, and IABT; (c) TPMS structure with porosity of 60%, 70%, 80%, and 70%""
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Fig.8 Gradiently porous structure 3D model and digital photos (a,) and stress-strain curves (a,) of RDOD porous tantalum with gradient

structure™; gradient gyroid porous structure 3D model and digital photo (b,) and stress-strain curves (b,) of network-gyroid porous

tantalum with gradient structure®”; gyroid porous structures with uniform and gradient porosity (c,) and permeability results (c,) from finite

element analysis of network-gyroid porous tantalum with gradient structure®
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Table 2 Mechanical properties of additively manufactured porous tantalum with TPMS and RDOD structures

Parameter TPMS (60%) TPMS (70%) TPMS (80%) RDOD (70%)
Compressive yield strength/MPa 99.2+15.2 58.249.4 30.7+1.8 43.4£1.0
Compressive modulus/GPa 11.0£1.1 7 .3+0.1 3.7£0.8 2.1£0.1
Bending yield strength/MPa 139.1+15.4 93 9+2.1 50.3+4.2 56.2+1.7
Bending modulus/GPa 16.14£3.3 7.4+0.6 2.4+0.3 4.240.8
Tensile yield strength/MPa 85.8+1.4 59.3£2.3 31.8+2.4 35.1+0.9
Tensile modulus/GPa 12.2+1.0 8.4+0.3 4.2+0.2 4.240.3
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Fig.9 3D models, digital photos, and SEM images of shell based TPMS porous tantalum (with various porosity) and strut-based RDOD porous
tantalum: (a) TPMS (60%), (b) TPMS (70%), (c) TPMS (80%), and (d) RDOD (70%)
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Fig.10 Structure optimization of additively manufactured tantalum: (a) standard RDOD and optimized RDOD (structures®®”; (b) pore unit

parameter optimizing, (c) 3D models of optimized structures”, and (d) bec, ISS, and TABT lattice structures™®
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Fig.11 Effect of raw-powder reuse time on the structure of additively manufactured tantalum: (a,) SEM images of the as-received powder, the 7th-

recycled powder (before the 7th manufacturing cycle), and the 13th-recycled powder (before the 13th manufacturing cycle), (a,) particle

size distribution of powder with different reuse times, (a,) stress-strain curves of specimens fabricated with different recycled powders™”;

(b) effect of energy density on microstructure!”’
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Fig.12 Effects of laser power and scanning speed on the structure of additively manufactured tantalum: (a) simulation results; (b) cross-section

morphologies of surface melting in the conduction mode and pores””; (c) tensile true stress-strain curves™®; (d) SEM images of worn surface

[36]. [40]
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Fig.13 Proliferation, adhesion, and spreading of rBMSCs promoted by additively manufactured tantalum: (a) rBMSCs proliferation™™, (b) semi-

quantitative analysis of fluorescence intensity in live-dead staining images of mBMSCs on porous Ta disks with different pore sizes'”
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Table 3 In vitro biological properties of additively manufactured porous tantalum

Additive .
) . Pore size/ . . . . .
Pore unit manufacturing Porosity/% In vitro biological properties Ref.
m
process "
173.2 23 . . .
376.9 53 The Ta scaffold with pore sizes ranging from 400 pm to 600 pm
Hexahedron SLM 534'3 co demonstrates strong in vitro cell adhesion, proliferation, and [42]
’ osteogenic differentiation capabilities.
726.9 79
Diamond and . L o
SLM (400) (70) Diamond > Dodecahedron (osteogenic differentiation) [21]
dodecahedron
Laser-treated porous Ta shows better hFOB cell adhesion, growth,
Net-shape LENS - 38-64 . ) o . [43]
apoptosis, and differentiation compared to porous Ti.
The Ta scaffold also exhibits improved cell adhesion and
- SLM 334 68.3 proliferation effects for human hBMSCs, enhancing osteogenic [44]
differentiation.
) Tantalum scaffold facilitates proliferation and osteogenic
Diamond SLM 406.5 58.5 . o [45]
differentiation of hBMSCs.
(450) 56.4 Tantalum scaffolds with porosities of 70% and 80% show better
Trabecular SLM (600) 66.7 osteogenic proliferation and differentiation abilities compared to [46]
(800) 79.3 those with a porosity of 60%.
) Additive manufactured Ta has a lower contact angle and higher
Gyroid strut-U 740 (15)

) surface energy than traditionally forged Ta, which facilitates cell
Gyroid strut-Y SLM 820-650  (20-10) [25]

. adhesion and proliferation. The uniform structure demonstrates
Gyroid strut-Z - (20-10)

better cell proliferation compared to the other two structures.

Note: Designed value in bracket and actual value out of bracket; LENS—Tlaser engineered net shaping

ELRRE i LRGBS TE AN AR . BE AR, TG BRI B /NG ) 5 PR REE 2 Luo S5 4% 1
FA R (3 D ARFLFR 2 (60%) NLE ZALHEA R T FL42 45 728 100~200.200~400. 400~600 F1 600~800 pm,
YRG5 s 15 S5 (5 ), LB R ZALH(T0%) 557710 FLBRFR 70008 25%.55%.75% 1 85% 1) 2 fL4H , 4 &l 13b
S G TEE I B R e X AT REAS T VA O T PR AR A S IR S I, FLAE 9 400~600 pm 1)
RINAR, BEE I REK , 4 1 R S A A2 3= SR, % S T A R T 20 BOR B B BERT T o4k 15 5 IR 4
FLA% 9 300~500 pm AL B % 60%~70% RE W% {2 12 & 2H 21 ECHAB s Y BE BRI SO0 REE . THRLRAR )5 iR
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Fig.14 In vitro biological properties of additively manufactured
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tantalum and titanium alloy: (a) SEM micrographs of
hBMSCs adhered on porous Ta and Ti6Al4V scaffolds;
(b) morphological analysis and DAPI and phalloidin

fluorescence labeling™!
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Fig.15 In vitro biological performance of porous tantalum with
trabecular and cubic lattice structures at varying porosities
(T70%: trabecular porous tantalum 70% porosity, C70%:

cubic porous tantalum with 70% porosity)
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Table 4 In vivo osseointegration and bone ingrowth of additively manufactured porous tantalum with different pore unit structure

Additive
Pore unit manufacturing  Pore size/um Porosity/% In vivo osseointegration and bone ingrowth Ref.
process
173.2 23 . . .
1769 53 The porous tantalum scaffold with pore sizes ranging from
Hexahedron SLM 534.3 60 400 pm to 600 pm exhibits better bone ingrowth and [42]
' osseointegration properties.
726.9 79 £ prop
Compared to porous Ti6Al4V scaffolds, the tantalum
scaffold  promotes  both  bone ingrowth  and
SLM 334 68.3 i , o . _ [44]
osseointegration, which is beneficial for bone ingrowth
and the fixation of bone implants.
) Porous tantalum scaffold facilitates bone ingrowth and
Diamond SLM 406.5 58.5 . ) . [45]
bone-implant osseointegration.
(450) 56.4 In terms of osseointegration, the trabecular porous
Trabecular SLM (600) 66.7 tantalum with 70% porosity shows a higher bonding rate [46]
(800) 79.3 with the host bone.
Histological analysis reveals significant bone ingrowth
Dodecahedron SLM (500) 79.7 after 12 weeks, and torsional tests of the implants indicate [9]

bone-implant osseointegration.

Note: Designed value is in bracket, and actual value is out of bracket
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Fig.16 Bone integration and bone ingrowth of additively manufactured porous tantalum and titanium alloy: (a) OM and SEM images of the bone-

implant interface after implantation of Ta, TNT, and Ti64 for 12 w"; (b) hard tissue section stained by van Gieson staining
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Fig.17 Bone integration and bone ingrowth of additively manufactured porous tantalum with different pore size!” (methylene blue and basic

fuchsin are used for detecting the new bone formation and trabecular bone ingrowth and integration in each group with different time.

Black indicates the scaffold, and red indicates new trabecular bone)
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Fig.18 Bone integration and bone ingrowth of additively manufactured porous tantalum in mouse femoral condyle: (a) bone ingrowth after

implantation for 6 w, (b) bone ingrowth after implantation for 12 w!*, (c) histological observation of hard tissue slices after implantation

(methylene blue staining)®™”
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Fig.19 Bone integration and bone ingrowth of additively manufactured porous tantalum with different porosity in rabbit femoral condyle:

(a) Toluidine blue (TB) staining for osseointegration after implantation for 8 w and 16 w (red arrows and red dashed lines are capillaries);

(b) TB staining for osseointegration after implantation for 8 w and 16 w; (c) quantitative analysis of bone contact rate; (d) new bone in

growth areal"!

Z LN YITERIE A0 B AR T IR ICR R
1 alifivy, 7 BA G BB B MO hee. JusEe
BT £ 7 L% 350 um. 2245 700 pum FIFLEREE 75% [ %
FLAEE RN, B8 A AR R S B U7 45 R
Harris 773 BOR T 58 i, A8 45 AR SR B

FABFNBIERINR . Zhang STVERGS 7 44 i VR HE 2B s
18 R FLBR R 75% B3 44 i) i 2 FLAELEAT 1001 B ik
AR TN BB B ACRE (835 AR5 R A » B
ThEe ARG S0 AR B et . B FTAE S M i 22 LA
AYEA TR E- KA E RS



53 ]

W A5 Wk )i 2 SUE A R AT RHIE 7Tk . 827 -

®5 EMFIES FLIBERHEANMRIEARN R

Table 5 Clinical application of additively manufactured porous tantalum

Clinical Postoperative follow-up ~ Pore size / . o
L . Porosity/% Clinical case Result Reference
application time/m pm
TKA 12 700 um 68.98 [66]
Carpal bone
19.6+2.7 [70]
replacement
Radius bone
13.6+2.7 [65]
replacement
Perone bone
replacement 16 386-540 75-85 Recovered well with (8]
restoring bone/joint
Ilium bone function
] 12 (200) [67]
reconstruction
Radius bone
24 [71]
replacement
THA 22.543.5 (350) # @3 [69]
I ’7'(‘ F e
TKA 12 (450) (65-80) ﬁ e [64]

Note: Designed value is in bracket, and actual value is out of bracket
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Research Progress of Additively Manufactured Porous Tantalum Orthopedic Implantable
Material

Yang Jingzhou"®, Ni Xiaojun’, Cheng Hao®, Wang Jian’, Chen Luyuan®, Hong Yonglong’, Li Qiulin'
(1. Institute of Materials Research, Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China)
(2. School of Mechanical and Automotive Engineering, Qingdao University of Technology, Qingdao 266520, China)
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Abstract: Tantalum, as a high-performance biometallic material with bioaffinity, is widely used in bone structure reconstruction and bone
function repair. Porous tantalum exhibits excellent mechanical properties, biological properties, as well as in vivo osseointegration and bone
ingrowth performance, showing outstanding clinical treatment effectiveness. This review based on recent research of our team and combined with
literature analysis, reviewed the latest research progress in additive manufactured porous tantalum materials, including fabrication processes,
structural design and optimization, mechanical properties, biological properties (cell-material interactions), in vivo osseointegration and bone
ingrowth capabilities, and clinical applications. In particular, additive manufactured porous tantalum materials and orthopedic implants allow for
the precise design and regulation of three-dimensional interconnected biomimetic porous structures, excellent static and dynamic mechanical
properties, and bone conduction and bonding abilities. These materials are easy to manufacture anatomically matched personalized products, with
promising applications in the repair of bone defects and the treatment of bone diseases.
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