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Fig.1 Schematic diagram of Primitive model (a) and Primitive multicellular models with different volume fractions and unit cell size of 8 mm (b)

F=1 FEIAFRS 2 Primitive s ELEE RIS 3

Table 1 Parameters of Primitive lattice structure model with different volume fractions

Model category Volume fraction, VF/% Actual volume/mm’ Actual volume fraction/%  Volume fraction deviation/%
VF 10 10 1389.889 10.054 0.540
VF 15 15 2082.397 15.064 0.427
VF 20 20 2772.494 20.056 0.280
VF 25 25 3463.945 25.057 0.228
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Table 2 Chemical composition of AIMgScZr alloy powder (wt%)
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Fig.2 SEM images (a) and particle size distribution (b) of AIMgScZr alloy powder
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Fig.3 Scanning strategy diagram of Primitive lattice structure sample
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Table 3 Parameters of SLM technique

Laser power/W  Scanning velocity/mm-s'  Layer thickness/um  Hatch spacing, #/mm Hatch angle, 6/(°) energ)Yi)lglr?ii;r/lJC' mm™
325 1100 50 0.12 67 49.24




2 W]

4t

F5E: ANFRFR 50 Primitive 55 FESE I AIMgScZr & 4 J1AMEREE A

. 409 -

Kl 4 Primitive f R 45 F L ) g 72

Fig.4 Creation process of Primitive lattice structure model
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Fig.5 Compression simulation settings of Primitive lattice structure: (a) boundary condition of quasi-static compression and (b) tensile stress-

tensile-strain curves of AIMgScZr alloy at room temperature
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Table 4 Performance parameters of AIMgScZr material

Density/ Young’s Poisson’s Yield [’lgri:;}fge
g-ecm®  modulus/MPa ratio strength/MPa strength/MPa

2.6 5.84x10* 0.3 289.64 331.92
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Fig.6 Simulated and experimental compressive stress-compressive
strain curves of Primitive lattice structures with different

volume fractions in the initial stage of compression
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Fig.7 Heat exchange finite element simulation and test of Primitive lattice structure: (a) boundary condition diagram of heat exchange simulation

and (b) comparison of temperature difference of inlet and outlet between experimental data and numerical simulation results
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Table S Thermophysical parameters and numerical simulation conditions of air and AIMgScZr alloy

Parameter Value
Specific heat capacity of air at RM, C,/J “(kg'K)™! 1004
Thermal conductivity of air at RM, k/W-(m-K)' 0.02607
Dynamic viscosity of air at RM, u, /Pa‘s 1.8477x10°
Density of air at RM, p//kg'm’3 1.1305
Applied heat flux, g/W-m™ 30000
Inlet air temperature, T, /K 297.13

Reynolds number, Re

144.55-722.75

Specific heat capacity of AIMgScZr alloys/J-(kg-K)' 853
Thermal conductivity of AlIMgScZr alloys/W-(m-K) ' 87

Density of AIMgScZr alloys/g-cm™

2.6
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volume fractions
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Table 6 Dimension of Primitive lattice structure samples with

different volume fractions

Sample Number Length, X/mm Width, ¥/mm Height, Z/mm

1 24.09 24.09 23.74
VF 10 2 24.02 24.00 23.78
3 24.06 24.05 23.75
1 24.09 24.06 23.77
VF 15 2 24.04 24.08 23.80
3 24.10 24.07 23.74
1 24.12 24.08 23.78
VF 20 2 24.17 24.10 23.78
3 24.04 24.07 23.77
1 24.15 24.13 23.72
VF 25 2 24.14 24.13 23.80
3 24.09 24.06 23.79
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Fig.9 Local SEM images of Primitive lattice structure samples with volume fraction of 10%
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Fig.10 Compressive mechanical properties of Primitive lattice structure samples with different volume fractions: (a) compressive stress-

compressive strain curves and (b) compression modulus and peak plateau stress
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Mechanical and Thermal Properties of AIMgScZr Alloy with Primitive Lattice Structure
of Different Volume Fractions

Li Yi', Wang Xiaogiang', Yi Wenjue', Zhou Yan™’, Wen Shifeng', Shi Yusheng'
(1. School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China)
(2. School of Civil and Hydraulic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China)
(3. National Center of Technology Innovation for Digital Construction, Wuhan 430074, China)

Abstract: With the urgent demand for high-performance thermal management components in aerospace field, multifunctional components that
combine efficient heat dissipation with excellent mechanical load-bearing capacity have become a focus of research. Using finite element
simulation and experimental characterization methods, this study systematically investigated the influence of volume fraction on the forming
quality, mechanical response, and heat exchange performance of AIMgScZr alloy Primitive lattice structures formed by selective laser melting
(SLM) technique. The results indicate that although the SLM-formed Primitive structure exhibits surface roughness and dimensional deviations,
its overall forming quality meets functional requirements. In terms of mechanical properties, an increase in volume fraction significantly enhances
the mechanical performance of the lattice structure. When the volume fraction reaches 25%, the compressive modulus reaches 1664.06 MPa, the
peak plateau stress is 42.85 MPa, and the energy absorption per unit volume increases significantly with increasing volume fraction. In terms of
heat exchange performance, the Nusselt number (Nu) of the Primitive lattice structure with a volume fraction of 25% increases by 41.6%
compared to that with a volume fraction of 10%. The increase in Reynolds number (Re) further enhances convective heat transfer efficiency, but
this is accompanied by an increase in friction factor (f). This study achieved synergistic regulation of heat exchange and mechanical properties
through volume fraction optimization, providing a reference for the application of Primitive lattice structures in thermal management components.

Key words: Primitive lattice structure; selective laser melting forming; mechanical properties; heat exchange performance
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