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Fig.2 Carbon concentration profiles relative to the position of the phase boundary in (a) the water-quenched (WQ) specimen and (b) the air-cooled

(AC) specimen of Fe-11.7Mn-2.9A1-0.064C (wt.%). (c) Engineering stress-strain curves of the WQ and AC specimens (the arrow indicates an

increase in yield strength). (d) Local strain distribution covering the whole gauge section of the two specimens in the yielding stage!>*!
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Fig.3. Mechanical response of Ti-3A1-2.5V alloy at room temperature. (a) Engineering stress-strain curves of uniaxial tensile tests. (b) Enlarged

view of the dashed rectangle in (a) showing different yielding behaviors. (c) Engineering stress-time curve of A700 and the corresponding DIC

maps depicting the distribution of the tensile strain (exx) fields on the sample surface at five representative points labeled as (I) to (V) during the

stress plateau stage. The inset shows an enlarged view within the time range of 110 s to 160 s. (d) Time evolution of global strain over the full

gauge length and the local strain at two locations of P1 and P2 indicated in (c). The inset shows an enlarged view within the time range from 0 s to

160 s. (e) Variation of tensile strain rates as function of time for the the global strain and the local strain at P1 and P2. The black dashed boxes in

(d, e) indicate the Liiders strain stages!>*!
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Fig.4. (a) Tensile stress-strain curves for selected Al specimens at RTI. (b) Tensile engineering stress-strain curves of the Cu specimens with
different grain sizes after processing by HPT and annealing. The necking initiation points were marked by open square symbols!.. (¢) Engineering
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curves of the Ti samples annealed at 500 °C for different time*”)
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Fig.5. Single and branched Liiders band deformation modes of NiTi. (a) The stress-strain variation showing mechanical instabilities over stress

plateau) . (b) The axial strain fields of the NiTi sample at progressive moments during the formation and propagation of the Liiders band. (c)

Occurrence of shear strains within the NiTi sample during tensile stress-induced A—M transformation*]
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Fig.6. (a) and (c) Nominal stress-strain curves of the UFG austenitic stainless steel specimens and corresponding tensile strains (&xx) maps obtained

by DIC analysis at room temperature and 200 °C, respectively. (b) SEM image of the gauge section of the specimen of which tensile test at room

temperature at a strain of 0.2 and corresponding EBSD phase maps obtained within the Liiders band. (d) SEM image of the gauge section near
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Research Progress on Room Temperature Discontinuous Yielding Behavior of
Metal Materials
Fan Yurong, Xue Xiangyi, Lai Minjie, LiJinshan, Luo Ting
(State Key Laboratory of Solidification Processing, Northwestern Polytechnical University, Xi’an 710072, China )
Abstract: Discontinuous yielding of metal materials during room temperature deformation is a critical scientific issue that significantly affects their
mechanical properties and application safety. This review systematically summarizes recent research advancements in this field, with a focus on the
characteristics, influencing factors and underlying mechanisms of discontinuous yielding. The discontinuous yielding phenomenon is mainly
characterized by a yield drop and a stress plateau on the stress-strain curve. Studies have shown that microstructural characteristics such as alloy
composition, recrystallization degree, grain size and morphology, as well as phase composition and stability, server as primary factors influencing
discontinuous yielding. These factors affect the yielding behavior by regulating dislocation movement and deformation mechanisms. Furthermore,
this work explores the intrinsic relationship between discontinuous yielding, room temperature deformation mechanism and the work hardening
behavior in metallic materials. Based on current research, future studies should focus on the microstructure regulation, alloy design, deformation
mechanisms and the development of constitutive models to deepen the understanding of discontinuous yielding and provide a foundation for
optimizing material properties.
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