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摘  要：本文通过调控热处理工艺系统研究了不同退火温度与保温时间下 MoNbVTa0.5 难熔高

熵合金微观组织与力学性能的演化规律。研究发现，退火时间为 24 h 时，随退火温度的升高，

合金组织均匀化程度提升。然而在 1500 ℃以上退火时合金析出富(Nb,Ta)相，劣化了合金塑性。

当退火温度为 1400 ℃时，随保温时间的延长，合金屈服强度不断升高，而塑性应变因析出相

钉扎效应呈现先升后降趋势。1300 ℃下 24 h 均匀化退火后合金实现强度-塑性协同提升，屈

服强度提高至 1530 MPa，室温塑性变形量达 9.2%，相比铸态时提高了 58.6%。 
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在航空航天发动机热端部件、核聚变堆第一壁等极端服役环境中，传统镍基高温合金因

熔点限制（通常<1400 ℃）已难以满足新一代装备对材料耐高温性能的严苛需求。难熔高熵

合金（Refractory High-Entropy Alloys, RHEAs）作为近年来发展的新型超高温结构材料，凭借

其高混合熵效应赋予的固溶体稳定性、难熔金属组元带来的优异高温强度，成为国际材料学

界的研究热点[1-8]。特别是在优化合金力学性能方面，国内外研究者做出了广泛而深入的探索。

例如，Senkov 等人开发出具有优异高温力学性能的 MoNbTaW 和 MoNbTaWV [9,10]，并使用轻

质 Hf、Zr 和 Ti 代替 W、Mo 和 V 获得了比强度更高的 HfNbTaTiZr、HfMoNbTaTiZr 高熵合

金[11,12]。Yao 等人[13]提出用 V 元素代替 MoNbTaW 中的 W 可提高材料泊松比，从而提高合金

室温塑性变形能力。 

由于难熔高熵合金的组成元素一般具有较高的熔点，通过真空电弧熔炼制备的合金在凝
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固过程中易产生成分偏析以及较大内应力，需通过热处理工艺均匀化其微观组织并消除内部

偏析[14-23]。吴长军等[24]采用电弧熔炼法制备了 FCC 型 CoxFeMnNi3-x 高熵合金，并研究了不同

退火温度下合金组织演变与耐蚀性变化规律，发现 1000 ℃退火后合金组织由等轴晶组成，耐

蚀性提高。Wu 等[25]研究发现 1000 ℃退火后的 Al7Cr20FexNi73-x(x = 13-66)合金由于 B2 颗粒的

沉淀使 FCC 相中的 Al 含量降低，导致合金硬度降低。温立哲等[26]通过真空熔炼和激光熔覆

技术制备块体与涂层状 Al2Ni2TiCoCrCu0.5FeMo 高熵合金，并进行了 773 K 的退火处理，发现

退火后块体和涂层样品硬度分别下降 6.4%和 2.1%，晶格常数也有一定减小。Gangireddy 等[27]

研究了铸态、低温退火态与高温退火态下 Al0.1CoCrFeNi 高熵合金的室温拉伸性能，发现通过

低温退火和高温再结晶退火均可提高合金延展性。Wang 等[28]通过研究 CoCrFeNiW0.5 的组织

与力学性能随退火温度的变化发现，随着退火温度的升高，合金先析出针状沉淀增强相，随

后增强相在 1200 ℃高温退火后分解，合金力学性能下降。马凯等[29]发现 Fe2-xCrMnAlxCu 高

熵合金枝晶组织内部存在 FeAl 析出物，在常温下析出相为脆性相，影响力学性能。当 x=1.6

时，高熵合金的综合性能达到最佳，抗压强度为 1431.52 MPa，变形率为 9.06%。Zhang 等[30]

发现随着退火时间的增加，Co10Cr10C2Mo1 高熵合金强度增加，但塑性先增加后降低，位错滑

移和孪晶机制相互竞争，影响了塑性变形过程。上述研究表明，热处理对合金力学性能的影

响较为复杂，有必要进行系统研究。 

本文基于作者前期研究结果[31]，选用高温力学性能优异的 MoNbVTa0.5 高熵合金作为研

究对象，通过改变均匀化退火温度与保温时间，研究不同热处理工艺条件下合金微观组织与

力学性能的演化规律，获得 MoNbVTa0.5 可实现强塑性协同提升的最佳热处理工艺。 

1 实验材料与方法 

采用纯度均在 99.95wt%以上的 Mo、Nb、V、Ta 纯金属原料进行电弧熔炼制备合金锭。

随后分别进行 1200 ℃-1800 ℃下保温 3 h-24 h 的均匀化退火处理。退火处理在可控气氛超高

温炉中进行，炉腔抽至高真空后通入高纯 Ar 气进行保护，升温速率为 10 ℃/min，冷却方式

为炉冷。 

使用型号为 XRD-7000 的 X 射线衍射仪对试样进行物相分析。使用配备有背散射（BSE）

探头的型号为 GeminiSEM 300 场发射扫描电子显微镜观察试样微观结构及断口形貌，并通过

能谱仪（EDS）进行成分分析。使用型号为 EPMA-8050G 的电子探针显微分析仪分析试样表

面微区成分，测定元素的偏析情况。利用岛津 AG IC-100 kN 材料力学性能试验机测试试样的

室温压缩性能，应变速率为 10-3s-1。采用型号为 430 SVD 的维氏硬度计，对试样的维氏硬度



 

 

进行测定。 

2 实验结果与分析 

2.1 微观组织分析 

图 1 为不同退火温度下 MoNbVTa0.5 合金的电子探针（EPMA）线扫描波谱分析的数据结

果。图 1（a）、（b）、（c）分别为 1200 ℃、1500 ℃、1800 ℃退火 24h 后的背散射电子图像与

线扫描处元素含量的变化。分析线扫描结果发现，1200 ℃退火后合金枝晶组织未发生明显变

化，成分偏析依然存在。1500 ℃退火后元素扩散速率加快，成分偏析程度减弱，组织成分趋

于均匀。1800 ℃退火后合金组织基本消除了成分偏析。为进一步评估枝晶组织的元素偏析程

度，计算绘制∆𝐶（∆𝐶 = 𝐶da − 𝐶aver）与∆𝑇（∆𝑇 = 𝑇𝑚 − 𝑇𝑚
𝑚𝑖𝑥）的相关函数，其中𝐶aver为元

素的平均浓度，𝐶da为枝晶臂中心的平均浓度，𝑇𝑚是合金元素的熔点，𝑇𝑚
𝑚𝑖𝑥是合金的理论熔化

性温度（采用混合物法则进行计算，𝑇𝑚
𝑚𝑖𝑥 = ∑ 𝑐𝑖

𝑛
𝑖=1 (𝑇𝑚)𝑖，其中(𝑇𝑚)𝑖是元素 i 的熔点）。通过

结果线性拟合后的斜率大小可得合金偏析程度，即 k 值越大，微观偏析越剧烈。图 1（d）为

不同退火温度下 MoNbVTa0.5 合金∆𝐶与∆𝑇之间的线性关系，可以看出，随着热处理温度升高，

拟合直线的斜率不断减小，说明合金组织的成分偏析程度逐渐减弱。这与溶质原子在较高能

量驱动下的扩散速率显著增大密切相关。上述结果表明，热处理温度的提高可以一定程度上

改善合金的成分偏析，且 1800 ℃下进行 24 h 热处理能够基本消除偏析现象。 

 

图 1 不同退火温度下合金线扫描波谱分析结果：（a）1200 ℃；（b）1500 ℃；（c）1800 ℃；

（d）偏析程度分析 

图 2 为 1800 ℃下 24 h 高温退火后 MoNbVTa0.5合金的电子探针元素面分布图。从图 2（a）

中可以看出，固溶体基体中析出了少量条状相，其衬度呈浅灰色。从析出相处元素的偏聚可



 

 

判断此析出相为富（Nb，Ta）相。类似的富（Nb，Ta）小尺寸析出相在 1500 ℃下 24 h 退火

后的枝晶组织中也弥散分布。造成该富（Nb，Ta）相析出的原因可能是退火过程中低熔点 V

原子从枝晶间不断扩散到枝晶中，Mo 原子不断由枝晶向枝晶间扩散，而枝晶内 Ta 原子由于

自身的高熔点限制了其扩散速率。随着枝晶内原子点阵被大量 V 原子占据，Ta 原子与原子尺

寸相似的 Nb 原子被排斥，偏聚后形成亮色析出相。 

 

图 2 1800 ℃下 24 h 高温退火后 MoNbVTa0.5合金的元素面分布图 

图 3 为合金经过 1200 ℃、1500 ℃、1800 ℃下 24 h 热处理后的 XRD 谱图。结合元素分

析结果可以发现，合金相结构在 1200 ℃的退火温度下始终保持为单相 BCC 结构，证明其组

成相在 1200 ℃以下的热稳定性优异。而 1500 ℃退火时析出相尺寸较小，含量较少，XRD 未

能检测出对应的衍射峰。随着退火温度达到 1800 ℃时，析出相长大，含量增多，XRD 图谱

中出现亮色富（Nb，Ta）析出相的衍射峰。 
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图 3 不同退火温度下 MoNbVTa0.5 合金的 XRD 谱图 

2.2 力学性能 

图 4 为不同退火温度处理后合金的力学性能。由图 4（a）的合金显微硬度可以看出，随

着退火温度的升高，合金维氏硬度值不断增加。由于高温下元素扩散，原子尺寸错配加剧了

晶格畸变。图 4（b）-（c）为合金室温力学性能。退火温度为 1200 ℃时，合金屈服强度相比

铸态略有下降，室温塑性变形量显著提高到 8%，相比铸态提高了 37.9%；退火温度为 1500 ℃

时，合金屈服强度明显升高，而塑性显著降低；退火温度为 1800 ℃时，合金屈服强度相比铸

态略有升高，此时发生脆性断裂。1200 ℃下退火 24 h 显著提高了材料的塑性，而过高的退火

温度会削弱合金材料的塑性变形能力，这可能与晶粒长大及析出相形成有关。 

 

图 4 不同退火温度下 MoNbVTa0.5 合金的力学性能：（a）显微硬度；（b）真应变-真应力

曲线；（c）屈服强度与塑性变形量的关系 

上述结果表明经过 1500 ℃退火后材料力学性能降低，因此进一步细化温度梯度，对合金

进行 1300 ℃及 1400 ℃下 24 h 的均匀化退火处理。图 5 为上述退火温度下的合金力学性能，

可以看出，随着退火温度从 1200 ℃升高到 1400 ℃，合金的屈服强度不断升高，这是由于元

素扩散后，原子尺寸错配使晶格畸变加剧造成的；室温塑性随着退火温度的升高先增加后降



 

 

低，在 1300 ℃的退火温度下达到了 9.2%的塑性变形量，相比铸态时提高了 58.6%。 

 

图 5 优化退火温度后 MoNbVTa0.5 合金的力学性能：（a）真应力-真应变曲线；（b）屈服强度

与塑性变形量的关系 

上述结果表明 1300 ℃下 24 h 高温退火后合金展现出最佳的室温力学性能。1400 ℃下 24 

h 高温退火后合金虽然屈服强度提升，但室温塑性变形能力下降，这可能与保温时间有关。

因此，在退火温度为 1400 ℃时，采用不同退火保温时间（3 h，6 h，9 h，12 h，24 h），研究

合金力学性能的变化规律。如图 6 所示，随着保温时间的延长，合金屈服强度不断升高，塑

性变形量先增加后减小，在保温时间为 9 h 时达到最优，塑性变形量~7.5%。通过对 1400 ℃

下 24 h 热处理样品的压缩断口形貌观察（如图 7 所示），发现断口表面弥散分布着细小析出

相。根据图 7（a）中 A、B 两处的 EDS 分析结果可知，断口表面的粒状析出相为富（Nb，

Ta）相，与 1800 ℃退火时合金的元素面分布结果相符。均匀化退火过程中枝晶偏析程度逐渐

降低，屈服强度与塑性随之不断升高，但较长的保温时间导致析出相形成与长大，影响了合

金的室温塑性力学性能。析出相较小时，由于其钉扎效应，会在位错滑移路径形成阻碍，引

起合金屈服强度的不断提升。当富（Nb，Ta）析出相尺寸逐渐增大，相界面处位错阻力增大，

产生位错塞积，引发应力集中，导致塑性下降。因此，虽然较高的退火温度有助于提高合金

屈服强度，但长时保温会在固溶体上形成新相，严重劣化了合金的塑性变形能力，造成 1400 ℃

下长时退火后合金力学性能的下降。 



 

 

 

图 6 1400 ℃时不同保温时间下 MoNbVTa0.5 合金的力学性能：（a）真应力-真应变曲线；（b）

屈服强度与塑性变形量的关系 

 

图 7 1400 ℃下 24 h 高温退火后的 MoNbVTa0.5 的断口形貌（a）BSE 图像；（b）A 处的

EDS 分析；（c）B 处的 EDS 分析 

 

3 结论 

本文围绕不同热处理工艺条件下 MoNbVTa0.5 系高熵合金微观组织与力学性能的演变规

律展开系统研究，厘清了退火温度、保温时长与微观偏析、强塑性之间的关联规律，获得了

最优热处理工艺条件，实现了相比铸态的强塑性协同提升。具体结论如下： 

（1）当保温时间为 24 h 时，随着退火温度的不断提高，原子扩散速率加快，枝晶间区

域比例增大，成分偏析逐渐消除，最终形成成分均匀的固溶体组织。高温退火虽然可降低合

金的成分偏析度，但伴随着富（Nb，Ta）析出相的形成与长大，其室温塑性显著降低，甚至

发生脆性断裂。 



 

 

（2）当退火温度为 1400 ℃时，随着保温时间的不断增加，合金屈服强度不断升高，但

长时保温下由于细小析出相的形成，又出现强度降低趋势。在退火时间为 9 h 时达到最佳塑

性变形量~7.5 %。 

（3）MoNbVTa0.5 高熵合金的热处理工艺在 1300 ℃下 24 h 与 1400 ℃下 9 h 均匀化退火

获得较好的力学性能。其中 1300 ℃下 24 h 热处理态合金屈服强度提高至 1530 MPa，同时室

温塑性变形量达 9.2%，相比铸态时提高了 58.6%。 
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Abstract: The present study systematically investigated the microstructural evolution and 

mechanical properties of MoNbVTa0.5 refractory high-entropy alloys (RHEAs) under varying 

annealing temperatures and holding times. It reveals that microstructural homogenization improves 

with increasing annealing temperature at a fixed 24 h of holding time. However, annealing above 

1500 °C induces the precipitation of (Nb,Ta)-rich phases, which deteriorates ductility. At 1400 °C, 

prolonged holding time enhances yield strength, while plastic strain initially increases and then 

decreases due to the pinning effect of precipitated phases. Notably, homogenization annealing at 

1300 °C for 24 h achieves a synergistic improvement in strength and plasticity: the yield strength 

increases to 1530 MPa, and plastic deformation reaches 9.2%, representing a 58.6% enhancement 

compared to the as-cast state.  
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