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Fig.3 Automatic extraction results of maximum principal strain
gradient of retaining groove
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Fig.4 Initial geometric structure and optimization variables of
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Fig.6 maximum principal strain iterative calculation result of retaining

groove feature-base specimen in structural optimization process
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Table 1 High temperature fatigue test programs of retaining

groove feature-base specimen

WSR-S | MNEeT /AN | 35 A /cycle Fr ¥ ff/cycle
RR-F1 7268
8.75 9902
RR-F2 12536
RR-F3 3312
9.38 4005
RR-F4 4698
RR-F5 2465
11.0 3848
RR-F6 5231
RR-F7 2041
12.5 2889
RR-F8 3737
RR-F9 889
13.8 1587
RR-F10 2181
RR-F11 711
15.0 825
RR-F12 939
RR-F13 695
16.3 747
RR-F14 799
RR-F15 520
16.9 558
RR-F16 596
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Fig.10 Geometric size and physical graph of standard notched round

bar specimen
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Fig.12 Maximum principal strain field of retaining groove feature-base

specimen at different loading
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Life and mechanism of FGH9S superalloy considering service characteristics
of powder metallurgy discs

Dong Chengli'?, Hong Jianfeng'? Sha Aixue'?, Peng Zichao? Wang Xuqing? Li Xingwu'?
(1.Center for Application & Evaluation, Beijing Institute of Aeronautical Materials, Aero Engine Corporation of China, Beijing 100095, China)
(2.National Key Laboratory of Advanced High-Temperature Structural Materials, Beijing Institute of Aeronautical Materials, Aero Engine
Corporation of China, Beijing 100095, China)

Abstract: In view of the lack of key issues on the service performance evaluation of the extruded and forged FGH95 alloy under the service
conditions of the aero-engine powder disc components, the present study first designed a feature-base specimen based on the maximum principal
strain gradient on the retaining groove of the powder disc component according to certain design criteria, and verified the design method. Then, the
fatigue life method based on the Theory of Critical Distances (TCD) was employed to predict the service life. Finally, the fatigue life method and
failure mechanisms were validated. The results show that the three - dimensional spatial domain automatic search method proposed in the present
study can obtain the maximum principal strain gradient on the retaining groove. Compared with the Morrow - modified total strain life method
commonly used in engineering, the TCD-base life method considering the strain gradient can more accurately predict the fatigue life of the
retaining groove. The important reason why the notched standard round bar specimen cannot accurately predict the fatigue life of the retaining
groove is reasonably explained. The differences in the fatigue failure mechanisms of the notched standard round bar specimen, retaining groove

and its feature-base specimen are verified by fracture analysis techniques.

Key words: powder-disk; maximum principal strain gradient; feature-base specimen; theory of critical distances (TCD); failure mechanism
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