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Table 1 Chemical composition of 10CrNi3MoV high strength steel (wt%)

Si C Mn Mo Ni \ S P Fe
0.17-0.37 0.07-0.14 0.30-0.60 0.02-0.27 0.90-1.20 2.30-3.00 0.04-0.10 <0.012 <0.02 Bal.
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Fig.1 Schematic diagram of the local-dry underwater wire-feeding laser deposition test system
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Table 2 Process parameters of underwater laser deposition layers

Canonical level value

3 LRI SNRENBERERITR
Table 3 Experimental design and the dilution rate and deposition

angle of deposited layers

Process parameter

-1 0 1
Laser power, P/W 2750 3000 3250
Scanning speed, V/mm-s ' 8 11 14
Wire feeding speed, W/mm-s ' 30 40 50
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Normal plot of residuals

Process parameter

Experiment Laser Scanning ) ~ Dilution Deposition
No. power/  speed/ R feedmgl rate/%  angle/(°)
W s speed/mm-s’
1 2750 8 40 12.35 78.03
2 2750 11 30 22.73 45.7
3 2750 11 50 8.47 85.27
4 2750 14 40 15.14 51.49
5 3000 8 30 21.11 46.9
6 3000 8 50 12.33 83.35
7 3000 14 30 32.83 31.13
8 3000 14 50 11.89 62.03
9 3250 8 40 19.29 53.4
10 3250 11 30 27.08 39.34
11 3250 11 50 11.67 61.64
12 3250 14 40 18.01 49.07
13 3000 11 40 15.02 59
14 3000 11 40 17.42 61.32
15 3000 11 40 16.04 60.25
16 3000 11 40 13.88 58.22
17 3000 11 40 14.07 62.15
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Fig.2 Applicability of the mathematical model: (a) dilution rate and (b) deposition angle
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Table 4 Analysis of variance of dilution rate before optimization

Sum of daf Mean

Source squares square Fvalue  Pvalue

Model 584.47 9 64.94 21.42 0.0003*

P 37.67 1 37.67 12.43 0.0097*

14 20.45 1 20.45 6.75 0.0356*

w 440.90 1 440.90 14545  <0.0001*

PV 4.14 1 4.14 1.37 0.2807**

Y/ 0.33 1 0.33 0.11 0.7509**

14/ 36.97 1 36.97 12.19 0.0101*

P 1.37 1 1.37 0.45 0.5229%*

V2 9.25 1 9.25 3.05 0.1242%*

W 32.35 1 32.35 10.67 0.0137*
Residual 21.22 7 3.03 - -

Lack of fit 12.57 3 4.19 1.94 0.2653%**
Pure error 8.65 4 2.16 - -
Cor total 605.69 16 - - -

Standard deviation=1.74 R*=0.9650
Mean=17.02 Adj R>=0.9199

Coefficient of variation=10.23

Pred R>=0.6456

Adep precision=17.540

Note: * -significant, ** -non-significant, Adj R’-Adjusted R%, Pred R’-
Predicted R? Adep Precision-Adequate precision, Cor Total-Corrected

total sum of squares

x5 MUEHRRERENN

Table 5 Analysis of variance of dilution rate after optimization

Sum of ar Mean

Source squares square Fvalue  Pvalue
Model 569.73 5 113.95 3485  <0.0001*
P 37.67 1 37.67 11.52 0.0060*
vV 20.45 1 20.45 6.25 0.0295*
w 440.90 1 44090  134.86  <0.0001*
14/4 36.97 1 36.97 12.19 0.0063*
w? 33.74 1 33.74 11.31 0.0083*
Residual 35.96 11 3.27 - -
Lack of fit 27.31 7 3.90 1.80 0.2968**
Pure error 8.65 4 2.16 - -
Cor total 605.69 16 - - -
Standard deviation=1.81 R’=0.9406
Mean=17.02 Adj R’=0.9136

Pred R*=0.7938
Adep precision=20.161

Coefficient of variation=10.62

Note: *-significant, **-non-significant

A, AR S 400354 0.4062 , 2 B 2R LI AS &35, % T
R 5 & H A, Adj R 5 Pred R* I /N T 0.2, U
B[] 051 7 R 4D 2 A B A 11 o

N7 PR TR EE T R LA R TR R AR Y
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Table 6 Analysis of variance of deposition angle before

optimization
Source 233;:;2 df 2332?6 F value P value
Model 3318.90 9 368.77 128.49  <0.0001%*
P 406.70 1 406.70 141.71  <0.0001*
vV 577.32 1 577.32 201.16  <0.0001*
w 2087.23 1 2087.23 727.28  <0.0001*
PV 123.32 1 123.32 42.97 0.0003*
PW 74.56 1 74.56 25.98 0.0014*
w 7.70 1 7.70 2.68 0.1454%**
P’ 3.242x10° 1 3.242x10°  1.130x10° 0.9741%*
7’ 19.69 1 19.69 6.86 0.0344*
w 19.88 1 19.88 6.93 0.0338*
Residual 20.09 7 2.87 - -
Lack of fit 9.67 3 3.22 1.24 0.4062**
Pure error 10.42 4 2.60 - -
Cortotal ~ 3338.99 16 - - -
Standard deviation=1.69 R’=0.9940
Mean=58.13 Adj R’=0.9862

Pred R’=0.9488
Adep precision=40.787

Coefficient of variation=2.91

Note: *-significant, **-non-significant
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Table 7 Analysis of variance of deposition angle after Wik, PEELEL A, RBRRAR TR, X2hmT
opfimiation k£ EROR PR TR L2 OO RE LI, 1 PR T4
Source E(irellr%fs df ggﬁzlrle Fvalue P value A AR 1) e B iR D AR AR UTAR X B OK, T A0 X /) 5 B
Model 331120 7 473.03 15318  <0.0001* FiRE TS AU, BB e e B 3b~3d AT,
v 57732 1 57732 18695  <0.0001* L2 IR T MR A S B2
w 2087.23 1 2087.23 675.88  <0.0001* B, I _FiR & Sr 0 L 2S5 5 008 £ i [ A 3
PV 12332 1 12332 3993 0.0001* B, AT PAHZ T ZS 806 W TR A AT 0 5, 3. 51—
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Fig.3 Effect of laser deposition parameters on dilution rate: (a) perturbation plot; (b) P-V interaction effect on dilution rate; (c) P-W interaction
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Fig.4 Effect of laser deposition parameters on deposition angle: (a) perturbation plot; (b) P-V interaction effect on deposition angle; (c) P-W

interaction effect on deposition angle; (d) V- interaction effect on deposition angle
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Fig.5 Comparison of predicted and actual values of dilution rate (a) and deposition angle (b)
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Table 8 Comparison and analysis of predicted and actual values

Experiment No. Dilution rate/% D:IE’ g"li‘}(lf)“
Actual 22.73 45.07
2 Predicted 23.77 44.66
|Error|/% 0.335 0.335
Actual 27.08 39.34
10 Predicted 28.11 39.04
|[Error|/% 0.332 0.097
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Fig.6 Macroscopic morphologies of the in-air (a) and underwater (b)

deposition layers
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Fig.7 Cross-section morphologies of the in-air (a) and underwater (b) deposition layers
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Fig.8 Microstructures of the in-air (a) and underwater (b) deposition layers
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Forming, Microstructure and Properties of 10CrNi3MoV High-Strength Steel by
Underwater Laser Melting Deposition

Zhang Zhigiang"?, Wang Jiaji"?, Hu Fengya'’, Guo Ning**’, Wu Di**, Cheng Qi**, Fu Yunlong***
(1. State Key Laboratory of Metallic Materials for Marine Equipment and Applications, Anshan 114009, China)
(2. Ansteel Group Iron and Steel Research Institute, Anshan 114009, China)
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(4. Shandong Provincial Key Laboratory of Special Welding Technology, Harbin Institute of Technology (Weihai), Weihai 264209, China)
(5. Harbin Institute of Technology, CGN-HIT Advanced Nuclear and New Energy Research Institute, Harbin 150001, China)

Abstract: China has independently developed 10CrNi3MoV high-strength steel, which has become a crucial structural material for manufacturing
submarine pressure hulls due to its high strength, excellent toughness, superior explosion resistance, and outstanding corrosion resistance. In this
study, the response surface method was used to investigate the effects of laser power, scanning speed, and wire feeding speed on the dilution rate
and deposition angle of the underwater single-pass deposition layer. Then the optimized underwater single-pass deposition process parameters
were obtained. Based on this, the influence of the water environment on the formation, microstructure, and microhardness of the single-pass
deposition layer was investigated. Compared with that in air, the faster cooling rate in the underwater laser melting deposition process leads to a
larger deposition angle and a slower dilution rate in the underwater deposition layer. Additionally, the microstructure of the underwater deposition
layer is finer, which results in a higher microhardness.

Key words: 10CrNi3MoV steel; underwater laser melting deposition; forming; microstructure and property
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