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Table 1 Chemical composition of 6061 aluminum alloy (wt%)

Cu Mn Mg Si Zn Cr Ti Fe Al

0.15-0.4 0.15 0.8-1.2 0.4-0.8 0.25 0.04-0.35 0.15 <0.7 Bal.
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Table 2 Chemical composition of TC4 wire (wt%)

Al Si Fe \% C o N Ti

5.4 0.15 0.30 3.41 11.0 0.15 0.15 Bal.
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Fig.1 Schematic diagram of experimental system
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Table 3 Process parameters of the first layer

Number Power/  Scanspeed/ Wire feed rate/  Defocus
W m-min’ mm-s’” distance/mm
1 2.0 1.0 10 +4
2 2.0 1.0 20 +4
3 2.0 1.0 30 +4
4 2.0 1.0 40 +4
5 2.0 1.0 50 +4
6 2.0 1.0 45 +4
7 2.0 0.6 45 +4
8 2.0 0.8 45 +4
9 2.0 1.2 45 +4
10 1.8 1.0 50 +4
11 1.6 1.0 50 +4
12 1.4 1.0 50 +4
13 2.0 1.0 50 +6
14 2.0 1.0 50 +8
15 2.0 1.0 50 +10
16 2.0 1.0 50 +12
17 2.0 0.4 45 +4
18 2.2 1.0 45 +4
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Table 4 Process parameters of subsequent deposited layers

Scan speed/ Wire feed Defocus
Power/kW . . )
m-min’ rate/mm-s’ distance/mm
2.0 0.6 20 +4
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Fig.2 Schematic diagram of tensile specimens for additive samples
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Fig.3 Metallographic corrosion images under different process parameters
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Table 5 Fusion ratios under different process parameters

Number Power/ Scan sPe_eld/ Wire feed_ lrate/ Defocus distance/ Fusion ratio
kW m-min mm-s mm
1 2.0 1.0 10 +4 0.359
2 2.0 1.0 20 +4 0.384
3 2.0 1.0 30 +4 0.471
4 2.0 1.0 40 +4 0.526
5 2.0 1.0 50 +4 0.571
6 2.0 1.0 45 +4 0.686
7 2.0 0.6 45 +4 0.579
8 2.0 0.8 45 +4 0.48
9 2.0 1.2 45 +4 0.529
10 1.8 1.0 50 +4 0.582
11 1.6 1.0 50 +4 0.677
12 1.4 1.0 50 +4 0.818
13 2.0 1.0 50 +6 0.680
14 2.0 1.0 50 +8 0.697
15 2.0 1.0 50 +10 0.742
16 2.0 1.0 50 +12 0.877
17 2.0 0.4 45 +4 0.792
18 2.2 1.0 45 +4 0.706
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Table 6 Estimated values of various parameters

Parameter ~ Estimated value Lower limit Upper limit
Bo —0.2417 —2.123 1.640
B 0.0596 ~1.112 1.231
B -0.1352 —0.614 0.343
B 0.0940 -0.591 0.779
B, -0.9739 -8.554 6.606
Bs 0.8970 —0.948 2.742
Be 0.7110 -0.295 1.717
s 2.734x10°° 0 0
Bs 0.0011 —0.009 0.011
Bs 0.2725 -3.718 4263
Bro -0.0935 —0.452 0.265
B 0.224 —4.351 4799
B 0.0099 —0.007 0.027
Bis —0.5479 -2.516 1.420
B 0.021 0.003 0.041
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Fig.4 Interfacial microstructures (a-d) and corresponding enlarged images (a,-d,) under different additive-layer numbers: (a, a,) 1 layer, (b, b,) 3 layers,

(c,c,)5 layers, and (d, d,) 10 layers
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Table 7 EDS results of marked points in Fig.4 (at%)

.. . . Possible
Position Mg Al Si Ti
phase
1 3.47 84.00  0.31 11.73 049  AIH+ALTI
2 1.72 69.75 0.71 2697  0.86 AlTi
3 1.20 69.87 0.71 27.39  0.82 ALTi
4 1.49 71.15 0.44  26.14  0.78 AlTi
5 1.29 82.84  0.10 15.77 0 AI+ALTI
6 1.11 68.37 046  29.62 044 ALTi
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Fig.7 Comparison of tensile strength
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Table 8 EDS results of Ti and Al sides of the tensile fracture in

Fig.8 (at%)
.. . . Possible
Position Mg Al Si Ti

phase
1 0.03 28.86 0 70.31  0.80 AlTi,
2 0.80 31.49 0.11 67.16 045 AlTi,
3 3.45 88.24 1.52 4.45 2.34 Al
4 2.73 49.24 031 4483 2.89 AlTi
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Table 9 EDS results corresponding to each point in the spliced fracture images of Fig.9 (at%)

Position Mg Al Si Ti \% Possible phase
1 5.90 91.76 0.07 2.08 0.19 Al+ALTi
2 2.03 66.05 0.15 31.28 0.49 AI+AITi
3 0 6.05 0.20 93.20 0.54 Ti+AITi,
4 4.32 95.21 0.06 0.29 0.12 Al
5 0.90 42.53 0.04 56.01 0.53 AlTi
6 1.71 62.51 0.06 35.15 0.57 AI+AITI
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Table 10 Simulation process parameters

L Power/  Scan speed/ Wire feed rate/ Defocus

ayer

Y kW m-min” mm-s” distance/mm
1 2.1 1.0 45 +10

2-10 2.0 0.6 20 +4

Y p o
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Fig.10 Schematic diagram of the finite element model and

thermocouple measurement position
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Fig.14 Evolution of residual stress in the cross-section of additive samples
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Optimization of Laser Additive Manufacturing Process for Titanium/Aluminum
Dissimilar Metals and Interface Evolution Characteristics

Zhang Hongtao'?, Fan Yanlong', Xu Jingwu', Sun Yu'
(1. Harbin Institute of Technology (Weihai), Weihai 264209, China)
(2. State Key Laboratory of Precision Welding & Joining of Materials and Structures, Harbin 150000, China)

Abstract: The additive manufacturing of titanium/aluminum dissimilar metals can achieve the integration of lightweight and high strength.
However, joining these two metals poses significant challenges. In this study, 6061 aluminum alloy was used as the substrate, and TC4 welding
wire was employed as the cladding material for the laser additive manufacturing of titanium-aluminum dissimilar metals. With the aim of
controlling the interfacial fusion ratio and minimizing intermetallic compound formation to enhance the interface performance, the process
parameters were optimized. The optimal parameters were determined through single-factor experiments and nonlinear regression analysis. Under
these parameters, the interfacial tensile strength of the aluminum/titanium dissimilar metal structure reaches to 60.67 MPa. The microstructural
evolution of the dissimilar metal interface under different additive manufacturing layer numbers was analyzed. The results show that as the
number of titanium alloy additive manufacturing layers increases, the brittle acicular compounds at the titanium-aluminum interface gradually
diffuse, transform into granular particles and eventually aggregate into a continuous layer. The evolution of interfacial residual stress was analyzed
through finite element simulation. The results indicate that the interfacial residual stress initially increases, then decreases, and finally rises
sharply, with severe stress concentration observed at both ends of the weld bead.
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