mEERMHSEIE

RARE METAL MATERIALS AND ENGINEERING ok

V()l.*****

https://doi.org/10.12442/j.issn.1002-185X.20250283

Zr BHR A SBAGS DR AT

A4k, £ &, WKk, & KEKR, F i

(BB R RS S REEZER, MiF KD 410073)
7 E AUCETHRBESEIRIESE S Pandat 1, BIFIEHIE T ZnNiFe) oo &4 (x=75/83/90 wt.%) , W5 T
EEHL NS SR R . 5 RR, M Zr HRIETE 83 we% KU L, A4 RIAERILHAL (d12-
Zry(Ni/Fe)/FCC-Zr) 5 HCP-Zr 5& 458, AN KDL FeZrs ib AR, FORAHTE MUl % 2 PR 4 974°C: 83Zr 5 90Zr
B & PR BRI 2R AR 53] 1352412 MPa. 14.2£0.4%41 126310 MPa. 17£0.3%, fEMRIUEA &RERTER T, WEMN
BRAEGE Zr FAR A S RIRRTE. B TR, SR FHEE S AT LS BT U1 7 Sl T R8P R, {48 Zr fr iR
THE, & WA el e PEAR SR T 2L 1) 45BN £ S AR . RS EAE T, 83Zr &5 90Zr & 43 RN AL AL
BN, FEH2RAS BT IR R, AEBRAENEIEREAS . %W AN Zr JE3E 5 2 M & S MR I BT BARE SR T 240

w, mRL,

IR T KA

XA Zr B Ae WWEEE WNTERRE, HRE5HM; h
SCERFRIRAD: A 3

FEGEDES: TG146.414

T RE
e 1002-185X.20250283

il

1 35

e g5 MM AL (Energetic Structural Materials, ESMs)
R BA g R, e B VR H T AT DUl
H e B B T S B 1) E e A IO R TEUH KRR R
GE Y-S5 — AR AR, TR AT ESR AR T, 4
FHOR B ATAT AR50 R PR BB A an e AR 2 4 | 24 B0 B
W &, AT DASREILAR S B P A A A i RE B Ak, SEIRL
R RE I B A R, 2 U AT A G IR &
TR ME R i B 0 B A RO AR

CIp e L S AR SIS Nt L
REE R URAE TR, SREGMMEIAEFREZRG =D
SRIE, EFEERA —E BN, DI SR B R
— B IEPEINE RE A A A R 2 AR SR R ) S )
— 061, ARYEM BL L AL, ESMs EE 0] 73 N & Jm /3R
P (i AVPTFED P, & J& /4 @ S A AL (I Al/Fe203)
@A (0 AN 4. W-Zr 54, Zr BEHES
&) BO=2%, BE/AREMNEE/ &EEE SR
SERIMPRLH T RRAE RN RS T2 BR ], A4 Rk o R
WEAC. ML, SR SREWMEH T RA R
R RE, 2 TS RE G AR G I # R

R TREMMET, Zr BER &SR
WA Rl —, BAEBER. JI¥FmE S s,
HFHEEPKRE Zr TRIAEMLAAIEERNRIRE
RERFIET), (H2 HATHEIC) Zr Bk d & S0 R 4 2k
TG — AT 2%, S et K, FERRZR INE N 5 i

WEI¥fR B EA:
HEWHEH: EREARRELEE (WHS 11972372)

2, WWERRR, BARCKRAH—E MR BT AR
AR BN TI8), (B RA N PR . I H. Ze ZEEd &
SR FE R S A HE R T %, TZ2WRE, A5
AT R B, S 1 HLAE SR 130 1) R, A% S )
Zr & T HWR N AR —BOK T 20%122), 78 i fi
BEANRE SE A, SFEUBRERMCRIRG, RLRAE NS
REZE AT RME

i G SR B T A AR R I 3 S B AR B AR T
FREH OIS s B4, DR LB IR s RN ) S Bl 1
HEE RIF0IRILRE T, ATTR]T Dol A A 7= AR A
B, HE, EREAESAAEEIH AR BRI
MR, X—4MAERTE&E&HSA MR 5T,
A & & 00 S 24 330, L MWMA SR, 3
i G — A 5 I H [T A A 4 TR A A A 1R 4 R s
Mo —MRME, BEEAAIEBONE R RARE, H
IVES L Re SRR 5 SR AL SIS R 4, dE
WHARE NG, EMEERR, BRI SE S
HFE—CRE LSRG S mBE iR, KEHE T
REEW P — P IRIE S G SRR LI H T 35
mE A SIS, WIS T B AN R
FCC/B2 T A1) AlCoCrFeNi,, St mki &4, BA
BARMIZEA SR . BT I, #57E Zr B A S W 5
ARG E&MBTH S, AEENERIERHS
T, RS E R —E B R 7T, I HLAT DA
HEIE I EA R RRARE 1, Imidh R HAE SR
SERARE IR

TEE A WRJulk, B, 1999 454, midAE, ERjRHE RS KRS, W KD 410073, HiE: 0731-84507222,

E-mail:chenlihe@nudt.edu.cn



*2 Wity El@pRLS TR Btk

BT, EWACER Zr 23L& Sk /T,
Biltn: Zr-Al-Ni. Zr-Ti-Nb 2531321, i Fix e & 4 3
i BAAAE Zr S EBARI R TEE (—R/AN T
30%) , EiZEEET, Zr TR LR T
FORVE, BARM Ze &, ML R B RELE MM R R
AEASMETE R . MRYE Ni-Zr. Fe-Zr o P MR 41, Zr
5 Ni. Fe fFEZA Zr S B MR I 5 OB A
I, FAE Ze A IN—E & Ni fl Fe, I3RS —HME
BRARKE SRS Zr & & Ze-Ni-Fe &4, JFH@T
AT ARG R R ¥, A SELE & 15 e
5T Z MR . 52 8T A % Ze-Ni-Fe =7t
BERRT, HIHBEXF Zr-Ni-Fe =n& 4 M4H4
GER T DR IAT R AL

BF ik, ACALE Pandat #1235 E SRS B, FIH
AU T 26 % T AR Zr & &1 Zr-Ni-Fe &4,
Fxt FLAH GRS L TROAH 2B R B RN ) S PR R HEAT TR

2 £ W

AR A Pandat #4725 0H L AF 4] Ze-(Ni/Fe)
Ph—JeAHEl, JEHET MBI RS R R DHL-1250 #Y
S HUE I ] 4% Z-Ni-Fe & 4. EM4E KT 99.9%
(1) Zr. Ni. Fe YulR& B 1E A ERL, #%H8 Zr-Ni-Fe 548 &
SR, TEmAE SR T T IS, BREESMRE
VMR 8 U, BRURIBIGRTIA] 30 s,  EL{d RS R LARA R K
5] VI EIRZITE 150~200 A, FHE 58 UG 7E 7K
VA A R R B Y

Zr-Ni-Fe &4 1Ak t@ it Rigaku SmartLab %Y
X SEATHAL (XRD) 4041, 45 A 30°~80°, 4

HEE A 5 °/min. K TESCAN MAIA4 77 % S H
T RME (SEM) WMEEE&MLHMHLLEM, HAH
EDAX Octane Elite BIgEi£{% (EDS) ME &S &G HRA
Ji K A JEOL-2100F B47 2 5 i 5 v b A (TEMD
WS G 4 IO IS5 8 . R A NETZSCH STA449C
BAED AT (DSC) AT A HT, FHEEZ N 10 C
/min, SHENES, WEN 20 mL/min. SKH WDW-100
R F T RERIEH LR & S R S R 48 S22k Rg, e
S ELRAFER SN 4 mm X4 mm X8 mm, MEIEZE N
0.5 mm/min, ABICREHE T SEM:, B S IREE N4 R
WEIENE NG R T IR ZE . RSB RE S 4
FRIEAFIRA & S MBS R 48 715V Re,  Bhas gm0 R
SN & 5 mm X2 mm.

3 HR5TE

3.1 Zr-Ni-Fe & 89&3t

MR Ni-Fe — oM, 4 Ni 8000 70 wit%
B, y-(Ni,Fe)tH B ARSI E Ry 1432°CBY, Fk, A
fRifb LIt FE, A SCAE BT Ze-Ni-Fe &40 RA M Ni.
Fe iE b N 7:3, fEULEEAE LN Zr TR . HT A &K
BRI BN Ze TURIRME, ARIEE S HIBEREKT, Zr &
BN AR . B 145t TR Pandat #4750 E A
221l Ni Fe toR 7:3 RIS Zr 35 Ze-(Ni/Fe)fh — It
HE, MWEHRRTLLEH, /£ Zr 8RN 83 wt%i Zr 5
Ni. Fe [EfA7E—/ ML R R (990°C) o G4kt 5
i1 FeZr; /1. HCP S5KJ10 Zr AHFN 112 G544 11 Zra(Ni/Fe)
AHEE A

2000
Liquid
1500 -
~
1 Liquid+ M,X_t112 BCC+Liquid
N’ Laves_| /L
g N +Liquid - -
Liquid+M,X 1 c
ey - s
8 1000 Laves_C15+ L CIQL id
g, MX oS+Liquid oo BCCHM,X (112 BCC+HHCP
E 2!
15) Vl
= HCP+M,X_tI12 BCC+HCP
Laves C15 +M,X 112
+MX 12 FeZrytM,X _tI12
500 - +MX_oS8

+Laves_CI5
+M,X_tl12

FeZr;tHCP+M,X tI12

0 FeZry+Laves Cl 5+MX708|8 IF eZry+M,X_tl12 MXI_OSS i
60 70 80 90 100
wt% (Zr)

1 Pandat #H B/ S22 1) Zr-(Ni/Fe)th — oA K
Fig.1 The pseudo-binary phase diagram of Zr-(Ni/Fe) drawn by Pandat phase diagram software



el Wi < JE AT RS TR AL 4%

R @A ek TAE) AR KA 3

3.2 Zr-Ni-Fe & &I K RILALR L5

SEGFF AR5 T Ze SRR A L
VT B = A Zr-Ni-Fe &4 (Zr(NiFe)100.c» x=75/83/90 wt.%,
A BIEFR A 752 83Zr. 90Zr 445D o XRD fiTH 45
REW, Zr & & EEHM Zr,(NiFe) 00, & & R R .
75Zr &4 H t112-Zry(Ni/Fe)fHF1/> & 1) FeZrs ML
83Zr M1 90Zr &4 FRLA EPIARSL, i HIL T HCP-Zr AT
B, 44 Ni-Zr. Fe-Zr —JoHHE S Pandat 0,
Wr 4 b FEAFAE t112 S50 Zro(Ni/Fe)fH. HCP 454
H) Zr #HA1/b &) FeZrs #H. XRD 255321, Pandat T5l
BEAERA , (A W AE 75 2R F SE RS A0SR AE T BOEAT A

BT XRD {URIAEGEAEFAE, Tk REIAE
FENAMGELE. FIRH SEM 44 EDS 4 T
Zry(NiFe) 100 A& MM AL, W 3 Frox. WE 3(a)+ T
PIEH, 75Zr 54 EPMMHE RILRHLES, X5
LRy AEAE 7 3 5 X3RN 7E BB I 74 A Fe B R O,
EDS &R E/REEH =Muum ot s], HhResE
M Zr S BRZ, 454 XRD SR, 752r 64 ¥ %5
EE t112 G591 Zro(Ni/Fe) M4 o 13— 42 1 Ze & 2

S BT R TAR Y H Yy R S o AL R BURIR B
m@m,ﬁ¢ﬁFhAm AN 3(b-c) 4 Bk [ A

Zr /at.% Ni /at.%

Fe /at.%

(@)

72.30 20.86 6.84

64.93 25.10 9.97

Zr /at.% Ni /at.% Fe /at.%

96.47 2.25 1.28

74.92 16.77 8.31

7.52

Ni /at.%

Fe/at.% |

1.44 0.63

16.77 7.51

8.48

16.99

eH8 A ~, 15 83Zr A1 90Zr
HiANIF,

Ui

Intensity (a.u.)

o A X

90Zr &
HZH t112 4
T B — R KA

30 55 60 65

i&mﬁ*ﬁéﬂf/\ﬁ/’{k 'ﬁ/\
AT AR 3 5 HICARA KN, J5 38 BB H Bk
EDS Rk 45 A XRD 75 g 7T 40, 83Zr Al

S AR SN HCP S50010 Zr A, F R IRIL &
LRI Zey(Ni/Fe)AH AN 57— R AL 1, {HIE

LE A

e HCP-Zr v tI12-Zr,(Ni/Fe) » FeZr,

Zry,(NiFe),,

Yo
Yo«

o

Zrgy(NiFe),,
vy i v X v vy ”X
I l j Zr,5(NiFe),s

70 75 80

29 (degree)
K 2 Zr(NiFe) 00+ A 41 XRD K3
Fig.2 XRD patterns of Zr.(NiFe)io0.x alloys
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Fig.3 The BSE and EDS images of Zr«(NiFe)io0-x alloys: (a) x=75; (b) x=83; (c) x=90
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Study on Synergistic Optimization of Microstructure and Mechanical Properties of
Zr-based Eutectic Alloy

Chen Lihe, Wang Rui, Yao Xinwei, Hai Nuo, Gao Yinghong, Zhang Zhouran, Li Shun
(College of Aerospace Science and Engineering, National University of Defense Technology, Changsha 410073, China)
Abstract: This investigation adopts a strategic approach focusing on low-melting point eutectic alloy design supplemented by thermodynamic
calculations of phase diagrams to develop and characterize Zrd(NiFe)ioox alloy systems (x=75/83/90 wt.%). Results demonstrate that at Zr
concentrations of 83 wt.% and above, the alloys develop a distinctive lamellar eutectic microstructure (tI12-Zr2(Ni/Fe)/FCC-Zr) coexisting with
HCP-Zr, featuring nanoscale FeZr; interphase precipitates at eutectic interfaces. Notably, the liquidus formation temperature exhibits a substantial
reduction to approximately 974°C, successfully achieving the desired low-melting point characteristics. The Zrss(NiFe)17 and Zroo(NiFe)1o alloys
exhibit compressive strengths of 1352+12 MPa and 1253+10 MPa with corresponding fracture strains of 14.2+0.4% and 17+0.3%, respectively.

These values represent a significant enhancement in fracture strain compared to conventional Zr-based amorphous alloys while maintaining
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comparable strength properties. Fractographic analysis reveals that dislocation pinning mechanisms and shear band bifurcation phenomena induced
by eutectic interfaces effectively impede crack propagation, facilitating a transition in fracture mode from brittle cleavage to 45° shear-dominated
failure with increasing Zr content. Under dynamic compression, both 83Zr and 90Zr alloys exhibit a strain rate hardening effect, and when the strain
rate exceeds a critical value, the alloys undergo a ductile-to-brittle transition. This research establishes a fundamental framework for the design of
low-melting point Zr-based eutectic multiphase alloys.
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