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Finite Element Analysis of Hot Deformation of Near-a Ti-1100
Alloy Based on ABAQUS
Zhu Wenjin, Piao Rongxun, Wang Wensong
(School of Mechanical Engineering, Anhui University of Science and Technology, Huainan 232001, China)

Abstract: Near-o Ti-1100 alloy specimens were prepared by powder metallurgy hot isostatic pressing method using
titanium hydride powder as raw material and finite element analysis was carried out based on ABAQUS for the hot
compression test of the specimens with size of @12 mm X8 mm. The results show that the center area of Ti-1100
alloy specimen is subjected to significant compressive stress, resulting in maximum deformation; the drum shaped
area is subjected to tensile stress, the deformation degree of the drum shaped area and top area is relatively small. At
low temperatures and high strain rates, the temperature rise in the center area of the sample is the largest, with
dynamic softening characteristics and significant uneven deformation, additionally, the stress difference between the
central area and the drum shaped area is significant, the internal deformation is intense; the drum shaped area is
dominated by tilted a lamellar grains, with localized plastic flow phenomenon occurs. Under high-temperature
low-strain conditions, the internal deformation is relatively uniform, and the microstructure dominated by equiaxed a
grains + transformed f phase. In addition, under all deformation conditions, the center area is dominated by «a
lamellar grains and dynamic recrystallization occurs, and the organization of the top area is similar to that of the
center area.
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Table 1  Stress-strain parameters of Ti-1100 alloy specimens at different deformation temperatures and strain rate of 0.01 s™

850 °C 900 °C 950 °C 1000 °C 1050 °C
Stress/MPa Strain Stress/MPa Strain Stress/MPa Strain Stress/MPa Strain Stress/MPa Strain
144.150 0.000 95.246 0.000 48.290 0.000 23.950 0.000 12.240 0.000
130.000 0.210 88.768 0.115 51.120 0.065 24.339 0.083 11.160 0.054
125.440 0.285 86.183 0.213 50.871 0.158 25.188 0.149 10.221 0.122
116.650 0.413 82.435 0.344 48.148 0.219 23.294 0.251 8.384 0.260
111.220 0.493 81.134 0.455 44.792 0.364 22.253 0.353 7.517 0.380
105.100 0.578 80.568 0.523 43.861 1.000 19.833 0.449 6.765 0.477
104.300 0.580 81.468 0.580 42.201 0.562 18.420 0.563 6.225 0.553
101.090 0.591 80.327 0.594 41.128 0.580 19.189 0.580 6.065 0.580
100.930 0.600 81.690 0.600 42.452 0.600 18.074 0.600 5.929 0.600
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Table 2 Stress-strain parameters of Ti-1100 alloy specimens at different deformation temperatures and strain rate of 0.1 s™

850 °C 900 °C 950 °C 1000 °C 1050 °C
Stress/MPa Strain Stress/MPa Strain Stress/MPa Strain Stress/MPa Strain Stress/MPa Strain
223.200 0.000 179.400 0.000 102.300 0.000 49.059 0.000 20.050 0.000
227.930 0.036 169.450 0.061 98.720 0.057 53.304 0.051 21.508 0.034
208.690 0.119 161.090 0.118 87.000 0.117 52.592 0.115 20.772 0.072
197.510 0.199 154.350 0.199 83.730 0.186 53.823 0.202 20.581 0.127
199.380 0.260 159.350 0.251 85.040 0.225 53.941 0.240 19.458 0.198
193.940 0.299 158.010 0.303 83.990 0.273 52.941 0.352 19.892 0.233
188.100 0.354 153.830 0.393 82.150 0.355 57.384 0.446 17.709 0.344
194.520 0.457 150.030 0.480 80.760 0.447 60.571 0.531 17.598 0.430
185.500 0.534 148.690 0.541 80.180 0.498 62.914 0.571 18.226 0.542
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Table 3 Stress-strain parameters of Ti-1100 alloy specimens at different deformation temperatures and strain rate of 1 s™

850 °C 900 °C 950 °C 1000 °C 1050 °C
Stress/MPa Strain Stress/MPa Strain Stress/MPa Strain Stress/MPa Strain Stress/MPa Strain
339.020 0.000 303.530 0.000 231.560 0.000 118.780 0.000 32.388 0.000
345.950 0.075 294.140 0.064 206.010 0.060 97.910 0.081 31.943 0.048
317.440 0.177 279.930 0.168 198.820 0.123 99.330 0.153 34.211 0.107
285.730 0.232 272.930 0.244 190.920 0.197 98.900 0.227 35.186 0.193
243.440 0.296 253.900 0.343 187.240 0.282 103.470 0.310 37.574 0.277
201.690 0.358 251.260 0.402 185.560 0.402 110.070 0.385 46.095 0.402
174.760 0.428 236.510 0.459 182.780 0.499 114.080 0.463 54.353 0.493
157.080 0.507 219.750 0.516 181.240 0.546 116.870 0.517 62.332 0.558
127.400 0.539 219.110 0.585 180.020 0.593 117.730 0.578 65.828 0.587
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