+高级检索
Ti-Nb作缓冲层的TiC金属陶瓷/不锈钢脉冲加压扩散连接
作者:
作者单位:

重庆大学材料科学与工程学院,重庆大学材料科学与工程学院

基金项目:

国家自然科学基金项目(面上项目,重点项目,重大项目)


Diffusion Bonding of TiC cermet to Stainless Steel using Impulse Pressuring with Ti-Nb Interlayer
Author:
Affiliation:

College of Material Science and Engineering,Chongqing University,College of Material Science and Engineering,Chongqing University

Fund Project:

National Natural Science Foundation of China (Project No.: 51205428)

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [25]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    采用Ti-Nb中间层对TiC金属陶瓷和不锈钢06Cr19Ni10进行了脉冲加压扩散连接,以实现缩短焊接时间并缓解界面产物对接头的有害作用的目的。连接温度890℃,脉冲压力2~10MPa工艺条件下,在4~12min时间内即实现了陶瓷与不锈钢的有效连接,与传统扩散焊相比连接时间大幅缩短。对接头进行显微组织表征发现在反应界面处存在溶解了少量Nb的σ相以及溶解了Ni的α β-Ti固溶体。在连接时间为10min时得到了最大的剪切强度110MPa。在剪切载荷下,接头沿着剩余的Ti/α β-Ti界面扩展至陶瓷内部断裂。结果表明,脉冲加压扩散连接能在一定程度上缩短焊接时间,中间层Ti/Nb的合理选择能很好的抑制了有害的金属间化合物的生成。

    Abstract:

    :Impulse pressuring diffusion bonding (IPDB) of TiC cermet to stainless steel 06Cr19Ni10 using Ti-Nb interlayer was carried out in an attempt to reduce the bonding time and alleviate the detrimental effect of interfacial reaction products on bonding strength. Successful bonding was achieved at 890℃ under a pulsed pressure of 2~10MPa within a duration of only 4~12min, which was notably shortened in comparison with conventional diffusion bonding. Microstructure characterization revealed the existence of the σ phase with a limit solubility of Nb, (β-Ti, Nb) phase, and solid solution of Ni in α β-Ti in the reaction zone. Maximum shear strength of 110MPa was obtained when the joint was bonded for 10min, indicating a robust metallurgical bonding was achieved. Upon shear loading, the joints fractured along the remnant Ti/ α β-Ti interfaceand extended to the interior of TiC cermet in a brittle cleavage manner. This technique provides a highly promising bonding method of TiC cermet and steel.

    参考文献
    1Miao Hezhou, Lin Xuping, Qi Longhao. Rare Metal Materials and Engineering[J], 2008, 37: 14 (in Chinese)
    2Sun Kangning, Yin Yansheng, Li AiMing. China Machine Press[M], 2002. (in Chinese)
    3Travessa D, Ferrante M, Ouden G D. Materials Science and Engineering A[J], 2002, 337:287.
    4Shen X, Li Y, Putchkov U A, et al. Computational Materials Science [J], 2009, 45: 407.
    5Ye Dameng, Xiong Weihao. Rare Metal Materials and Engineering[J], 2008, 37: 1281.
    6Pierson H O. William Andrew[M], 1996.
    7Gomez-de-Salazar J M, Barrena M I. Materials Science and Engineering A[J], 2003, 352: 162.
    8Barrena M I, de Salazar J M. Materials Letters[J], 2009, 63: 2142.
    9Li Z R, Feng J C, Cao J. Materials science and technology[J], 2004, 20: 1666-1668.
    10Wang juan, Li Yajiang, Huang Wangqun. Kovove Materials[J], 2010, 48: 227.
    11Chen Z, Cao M S, Zhao Q Z. Materials Science and Engineering. A[J], 2004, 380:394.
    12Zheng C, Lou H, Fei Z, et al. Journal of materials science letters [J], 1997, 16: 2026.
    13Wang G, Lannutti J J. Metallurgical and Materials Transactions A[J], 1995, 26: 1499-1505.
    14Yang M, Zou Z D, Song S L, et al. Key Engineering Materials[J], 2005, 297: 2435.
    15Marks R A, Sugar J D, Glaeser A M. Journal of materials science[J], 2001, 36: 5609.
    16Shackelford J F, Alexander W. CRC press[M]. 2010.
    17Massalski T B, Okamoto H, Subramanian P R, et al. ASM international[M], 1990.
    18Han J, Sheng G M, Zhou X L, et al. ISIJ international[J], 2009, 49: 86-91.
    19Sun X J, Gu J L, Bai B Z, et al. Acta Metallurgica Sinica [J], 2009, 13: 638-644.
    20Liu G M, Zou G S, Wu A P, et al. Materials Science and Engineering A[J], 2006, 415: 213.
    21Pontau A E, Lazarus D. Physical Review B[J], 1979, 19: 4027.
    22Kundu S, Chatterjee S. Materials Characterization [J], 2008, 59: 631-637.
    23Kirchner H P, Conway J C, Segall A E. Journal of the American Ceramic Society[J], 1987, 70: 104-109.
    24Blugan G, Kuebler J, Bissig V, et al. Ceramics international[J], 2007, 33: 1033.
    25Singh M, Martinez Fernandez J, Asthana R, et al. Ceramics International[J], 2012, 38(4): 2793-2802.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

李佳,盛光敏. Ti-Nb作缓冲层的TiC金属陶瓷/不锈钢脉冲加压扩散连接[J].稀有金属材料与工程,2017,46(4):882~887.[Li Jia, Sheng Guangmin. Diffusion Bonding of TiC cermet to Stainless Steel using Impulse Pressuring with Ti-Nb Interlayer[J]. Rare Metal Materials and Engineering,2017,46(4):882~887.]
DOI:[doi]

复制
文章指标
  • 点击次数:1699
  • 下载次数: 1560
  • HTML阅读次数: 161
  • 引用次数: 0
历史
  • 收稿日期:2014-12-31
  • 最后修改日期:2015-01-11
  • 录用日期:2015-02-06
  • 在线发布日期: 2017-08-04