+高级检索
钴纳米粒子改性石墨烯复合材料的电磁性能
作者单位:

北京航空航天大学,北京航空航天大学,北京航空航天大学,北京航空航天大学

中图分类号:

TB34

基金项目:

北京市科学技术委员会(D141100002414001)及航空基金(No.2013ZF51073)


Electromagnetic properties of graphene composites modified with cobalt nanoparticles
Affiliation:

Beihang University,Beihang University,Beihang University,Beihang University

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [28]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    本文采用化学镀的方法,先后用氯化亚锡敏化、氯化钯活化,在石墨烯表面沉积钴纳米粒子。XRD、TEM结果显示钴在石墨烯表面的晶体结构和含量因钴前驱体盐和还原剂浓度而异。电磁测试结果表明:钴含量的增加和石墨烯的还原均能提升Co-RGO的电导率;同时,Co-RGO纳米复合材料由于具有磁损耗和大量界面引入的介电损耗,吸波性能优异,Co-RGO*1在1~18GHz频段内反射率低于-10dB的频宽约为4GHz,Co-RGO*2在26.5~40GHz频段内反射率均小于-23dB。

    Abstract:

    In this paper, cobalt nanoparticles were deposited on the surface of graphene by electroless plating,first sensitization and then activation using stannous chloride and palladium chloride respectively. XRD and TEM results showed that the concentrations of cobalt precursor and reductant affected the structures and yield of cobalt crystals. Electromagnetic tests results showed that the increasing cobalt content and reduction of graphene both improved the conductivity of Co-RGO. Meanwhile, Co-RGO nanocomposites had excellent absorbing properties because of magnetic loss and dielectric loss by lots of interfaces. For instance, the bandwidth of reflection below -10dB for Co-RGO*1 during 1~18GHz was about 4GHz, and the reflection for Co-RGO*2 was below -23dB from 26.5 to 40 GHz.

    参考文献
    [1] 邱琴,张晏清,张雄.电磁吸波材料研究进展[J].电子元件与材料2009,28(8): 78-81
    [2] 王洁萱.石墨烯复合吸波剂的制备及电磁防护性能研究[D]. 北京:北京理工大学,2015
    [3] 林帅.石墨烯基金属及金属氧化物复合吸波材料的制备及其性能研究[D].北京:北京化工大学,2013
    [4] 景红霞.低频段复合吸波材料的制备及电磁性能研究[D].山西:中北大学,2013
    [5] 王雷.石墨烯三维复合材料的制备及其微波吸收性能研究微波吸收性能研究[D].山西:西北工业大学,2014
    [6] Qiu J, Shen H, Gu M. Microwave absorption of nanosized barium ferrite particles prepared using high-energy ball milling[J]. Powder technology, 2005, 154(2): 116-119.
    [7] Feng Y B, Qiu T, Shen C Y, et al. Electromagnetic and absorption properties of carbonyl iron/rubber radar absorbing materials[J]. Magnetics, IEEE Transactions on, 2006, 42(3): 363-368.
    [8] Chen X, Wang G, Duan Y, et al. Microwave absorption properties of barium titanate/epoxide resin composites[J]. Journal of Physics D: Applied Physics, 2007, 40(6): 1827.
    [9] Fan Y, Yang H, Li M, et al. Evaluation of the microwave absorption property of flake graphite[J]. Materials Chemistry and Physics, 2009, 115(2): 696-698.
    [10] 艾伦弘,蒋静.聚苯胺/ZnFe2O4纳米复合物的制备与表征[J].应用化学, 2010, 27 (1):92-95.
    [11] Gu Hongbo, Huang Yudong, Zhang Xi, et al. Magnetoresistive polyaniline-magnetite nanocomposites with negative dielectrical properties[J]. Polymer,2012, 53 (3): 801-809.
    [12] C. Wang, X. J. Han, P. Xu, et al. The Electromagnetic Property of Chemically Reduced Graphene Oxide and Its Application as Microwave Absorbing Material[J]. Applied Physics Letters, 2011, 98(7): 072906.
    [13] J. J. Liang, Y. Wang, Y. F. Ma, et al. Electronic Interference Shielding of Graphene/Epoxy Composites[J]. Carbon, 2009, 47: 922-925.
    [14] Li X, Yi H, Zhang J, et al. Fe3O4–graphene hybrids: nanoscale characterization and their enhanced electromagnetic wave absorption in gigahertz range[J]. Journal of nanoparticle research, 2013, 15(3): 1-11.
    [15] Liu P B, Huang Y, Sun X. Excellent electromagnetic absorption properties of poly (3,4-ethylenedioxythiophene)-reduced graphene oxide–Co3O4 composites prepared by a hydrothermal method[J]. ACS applied materials interfaces, 2013, 5(23): 12355-12360.
    [16] Zhang H, Xie A, Wang C, et al. Novel rGO/α-Fe2O3 composite hydrogel: synthesis, characterization and high performance of electromagnetic wave absorption[J]. Journal of Materials Chemistry A, 2013, 1(30): 8547-8552.
    [17] S.B. Yang, G.L. Cui, S.P. Pang, Q. Cao, U. Kolb, X.L. Feng, J. Maier, K.K. Mullen Chemsuschem, 3 (2010), pp. 236–239
    [18] J.H. Warner, M.H. Rummeli, A. Bachmatiuk, M. Wilson, B. Buchner ACS Nano, 4 (2010), pp. 470–476
    [19] 肇研, 段跃新, 李蔚慰等. 多壁碳纳米管复合材料在 8mm 波段的吸波性能[J]. 复合材料学报, 2007, 24(3): 23-27.
    [20] 田莳. 材料物理性能[M]. 北京:北京航空航天大学出版社,2004.(97-109)
    [21] Yusra Arooj. Electromagnetic and Microwave Absorption Properties of Carbon nanotubes-Graphene Oxide/Epoxy Composites [D]. 北京:北京航空航天大学,2011. (65-68)
    [22] 朱宏伟,徐志平,谢丹等.石墨烯:结构、制备方法与性能表征[M].北京:清华大学出版社.2011
    [23] 赵宝燕. Ti掺杂钡铁氧体吸波材料制备与多共振吸波性能研究[D].浙江:浙江大学,2014.
    [24] Yang J, Tian C, Wang L, et al. An effective strategy for small-sized and highly-dispersed palladium nanoparticles supported on graphene with excellent performance for formic acid oxidation[J]. Journal of Materials Chemistry, 2011, 21(10): 3384-3390.
    [25] Liang R, Hu A, Persic J, et al. Palladium Nanoparticles Loaded on Carbon Modified TiO2 Nanobelts for Enhanced Methanol Electrooxidation[J]. Nano-Micro Letters, 2013, 5(3):202-212.
    [26] H. Yu, T. S. Wang, B. Wen, M. Lu, X. Zheng, et al, Graphene/polyaniline nanorod arrays: synthesis and excellent electromagnetic absorption propertie [J], J. Mater. Chem. 2012, 22, 21679-–21685.
    [27] L. Kong, X. Yin, X. Yuan,Y. Zhang, Electromagnetic wave absorption properties of grapheme modified with carbon nanotube/poly dimethyl siloxane composites [J], Carbon, 2014, 73, 185-193.
    [28] C. Grosse, A program for the ?tting of Debye, Cole–Cole, Cole–Davidson, and Havriliak Negamis dispersions [J], J. Collo. Inter. Sci. 2014, 419, 102-106. [2] Tomita N, Guo L, Zhang Y et al. J Am Ceram Soc[J], 1995, 78(8): 2153
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

张海琴,徐双双,陈元,肇研.钴纳米粒子改性石墨烯复合材料的电磁性能[J].稀有金属材料与工程,2017,46(12):3785~3791.[Zhang Haiqin, Xu Shuangshuang, Chen Yuan, Zhao Yan. Electromagnetic properties of graphene composites modified with cobalt nanoparticles[J]. Rare Metal Materials and Engineering,2017,46(12):3785~3791.]
DOI:[doi]

复制
文章指标
  • 点击次数:1529
  • 下载次数: 1443
  • HTML阅读次数: 148
  • 引用次数: 0
历史
  • 收稿日期:2015-10-26
  • 最后修改日期:2016-01-21
  • 录用日期:2016-02-24
  • 在线发布日期: 2018-01-04