+高级检索
简单一步法合成Co9S8氧还原反应电催化剂
作者:
作者单位:

哈尔滨工业大学化工学院, 绥化学院食品与制药工程学院,绥化学院食品与制药工程学院,哈尔滨工业大学化工学院

基金项目:

黑龙江省自然科学基金资助项目(B201423)


A Facile One-step Synthesis of Co9S8 Electrocatalyst for Oxygen Reduction Reaction
Author:
Affiliation:

School of Chemical Engineering and Technology,Harbin Institute of Technology,School of Food and Pharmaceutical Engineering,Suihua University,School of Chemical Engineering and Technology,Harbin Institute of Technology

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [39]
  • |
  • 相似文献 [6]
  • | | |
  • 文章评论
    摘要:

    采用低温回流技术,以Co4(CO)12和S粉为原料,在1, 6-己二醇溶剂中一步合成了钴硫化物催化剂。用X射线衍射仪和扫描电子显微镜对合成的化合物进行了表征。XRD分析表明合成样品为立方结构的Co9S8化合物,其SEM图片显示了花椰菜状的表面形貌。Co9S8化合物表现出良好的氧还原催化活性,开路电位为0.75 V(vs. NHE)。在电荷转移控制电位区,电极反应传递系数和塔菲尔斜率分别为0.50和119 mV。同时,将催化剂的催化活性和电化学稳定性与商业铂催化剂进行了比较。

    Abstract:

    A Co-based chalcogenide electrocatalyst has been synthesized by a facile one-step reaction of dodecacarbonyltetracobalt [Co4(CO)12] and elemental sulfur in 1, 6-hexanediol solvent under refluxing conditions. The characterizations of the synthesized compound are performed by X-ray diffraction (XRD) and scanning electron microscopy (SEM). XRD shows the formation of cubic structure Co9S8 and SEM micrograph displays cauliflower-like surface morphologies. The catalyst has an open circuit potential (OCP) of 0.75 V (vs. NHE) and shows a promising catalytic activity for the oxygen reduction. The transfer coefficient and Tafel slope are calculated to be 0.50 and 119 mV in the potential region limited by charge transfer kinetics, respectively. The catalytic activity and the electrochemical stability of the catalyst have also been compared with a commercial Pt catalyst.

    参考文献
    1Hyun K, Lee J H, Yoon C W et al. International Journal of Electrochemical Science[J], 2013, 8: 11752
    2Ozdemir O K. Electrochemistry[J], 2015, 83: 76
    3Gasteiger H A, Kocha S S, Sompalli B et al. Applied Catalysis B[J], 2005, 56: 9
    4Shao Y Y, Zhang S, Wang C M et al. Journal of Power Sources[J], 2010, 195: 4600
    5Cheng N, Banis M N, Liu J et al. Advanced Materials[J], 2015, 27: 277
    6Wang S, Yu D, Dai L. Journal of the American Chemical Society[J], 2011, 133: 5182
    7Wang J J, Chen Y G, Liu H et al. Electrochemistry Communications[J], 2010, 12: 219
    8Zhang S, Shao Y, Liao H et al. Chemistry of Materials[J], 2011, 23: 1079
    9Feng Y, Gago A S, Timperman L et al. Electrochimica Acta[J], 2011, 56: 1009
    10Duan D, Liu S, Niu X et al. Rare Metal Materials and Engineering[J], 2011, 40: 1282 (in Chinese)
    11Zhao D, Ma S. Rare Metal Materials and Engineering[J], 2014, 43: 846 (in Chinese)
    12Zhao D, Ma S. Chemical Research in Chinese Universities[J], 2015, 31: 447
    13Kothandaraman R, Nallathambi V, Artyushkova K et al. Applied Catalysis B: Environmental[J], 2009, 92: 209
    14Yang Z, Nie H, Chen X et al. Journal of Power Sources[J], 2013, 236: 238
    15Zhai H, Cao L, Xia X. Chinese Chemical Letters[J], 2013, 24: 103
    16Alonso-Vante N, Tributsch H. Nature[J], 1986, 323: 431
    17Gao M, Jiang J, Yu S. Small[J], 2012, 8: 13
    18Li H, Gao D, Cheng X. Electrochimica Acta[J], 2014, 138: 232
    19Baresel V D, Sarholz W, Scharner P et al. Berichte Der Bunsengesellschaft Für Physikalische Chemie[J], 1974, 78: 608
    20Behret H, Binder H, Sandstede G. Electrochimica Acta[J], 1975, 20: 111
    21Sidik R A, Anderson A B. Journal of Physical Chemistry B[J], 2006, 110: 936
    22Morris B, Johnson J, Wold A. Journal of Physics and Chemistry of Solids[J], 1967, 28: 1565
    23Schneemeyer L F, Sienko M J. Inorganic Chemistry[J], 1980, 19: 789
    24Cui H, Pike R D, Kershaw R et al. Journal of Solid State Chemistry[J], 1992, 101: 115
    25Zhan J H, Yang X G, Xie Y et al. Journal of Materials Research[J], 1999, 14: 4418
    26Qian X F, Zhang X M, Wang C. et al. Inorganic Chemistry[J], 1999, 38: 2621
    27Wang C, Zhang X M, Qian X F et al. Journal of Physics and Chemistry of Solids[J], 1999, 60: 2005
    28Zhou Y X, Yao H B, Wang Y et al. Chemistry-A European Journal[J], 2010, 16: 12000
    29Zhao D, Zhang S, Yin G et al. Journal of Power Sources[J], 2012, 206: 103
    30Patterson A L. Physical Review[J], 1939, 56: 978
    31Borja-Arco E, Castellanos R H, Uribe-Godinez J et al. Journal of Power Sources[J], 2009, 188: 387
    32Vayner E, Sidik R A, Anderson A B. Journal of Physical Chemistry C[J], 2007, 111: 10508
    33Wang H, Liang Y, Li Y et al. Angewandte Chemie-International Edition[J], 2011, 50: 10969
    34Feng Y J, He T, Alonso-Vante N. Fuel Cells[J], 2010, 10: 77
    35Suarez-Alcantara K, Rodriguez-Castellanos A, Dante R et al. Journal of Power Sources[J], 2006, 157: 114
    36Zhang S, Shao Y Y, Yin G P et al. Journal of Materials Chemistry[J], 2010, 20: 2826
    37Hsueh K L, Chin D T, Srinivasan S. Journal of Electroanalytical Chemistry[J], 1983, 153: 79
    38Clouser S J, Huang J C, Yeager E. Journal of Applied Electrochemistry[J], 1993, 23: 597
    39Alonso-Vante N, Tributsch H, Solorza-Feria O. Electrochimica Acta[J], 1995, 40: 567
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

赵东江,马松艳,尹鸽平.简单一步法合成Co9S8氧还原反应电催化剂[J].稀有金属材料与工程,2017,46(12):3577~3582.[Zhao Dongjiang, Ma Songyan, Yin Geping. A Facile One-step Synthesis of Co9S8 Electrocatalyst for Oxygen Reduction Reaction[J]. Rare Metal Materials and Engineering,2017,46(12):3577~3582.]
DOI:[doi]

复制
文章指标
  • 点击次数:1722
  • 下载次数: 1816
  • HTML阅读次数: 172
  • 引用次数: 0
历史
  • 收稿日期:2015-12-17
  • 最后修改日期:2016-01-07
  • 录用日期:2016-02-24
  • 在线发布日期: 2018-01-04