+高级检索
FeWB基陶瓷在真空烧结过程中的组织和相转变
作者:
作者单位:

四川大学材料科学与工程学院,四川大学材料科学与工程学院,四川大学材料科学与工程学院,四川大学材料科学与工程学院


Synthesis and microstructure evolution of FeWB based cermets during the vacuum sintering
Affiliation:

Sichuan University,,,

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [16]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    研究了烧结温度和保温时间对反应硼化烧结制备FeWB基陶瓷的影响。利用X射线衍射,扫描电镜和能谱仪对FeWB基烧结过程中的相转变,微观组织以及反应机理进行了表征。结果表明FeWB硬质相是通过W + Fe2B = FeWB + Fe和FeB + W = FeWB两种方式合成的,并且反应生成的FeWB晶粒呈各向异性分布。在温度区间为800℃-1150℃之间,FeWB基陶瓷的密度骤然升高,这与Fe2B相的熔化有关。在1300℃时,由于W2B相的存在,会使FeWB相转变为Fe7W6相,从而使密度进一步升高。随着烧结温度的提高,通过液相烧结制备的金属陶瓷表现出相对均匀的微观结构,而且原位合成的FeWB颗粒会发生长大。为了获得较高的致密度,实验结果表明,FeWB基陶瓷的烧结温度应控制在1150℃-1250℃之间。其次,适当的增加铁和硼铁的含量有利于烧结的致密化。

    Abstract:

    The FeWB based cermets were produced by the reaction boronizing sintering at different temperature and with different holding time. The influences of temperature and holding time on the phase transformation, microstructure of cermets as well as the reaction mechanism were investigated by X-ray diffraction meter (XRD), scanning electron microscopy (SEM) and energy disperse spectroscopy (EDS). The results showed that the hard phase FeWB was produced in the compact at the stage of solid phase sintering by the reaction W + Fe2B = FeWB +Fe and W + FeB = FeWB. Besides, the FeWB phase exhibited an equiaxed morphology. The distinctly rapid densification occurred at the temperature ranging from 800°C to 1150°C while the FeWB phase transformed to Fe7W6 phase, which resulted in the further improvement of the density when the temperature exceeded 1300°C. With an increase of temperature, the cermets prepared by liquid phase sintering exhibited a relatively homogenous microstructure, accompanied by in situ growth of thick FeWB grains. In order to obtain a higher density, the experimental results showed that the sintering temperature of preparing FeWB based cermets should be controlled between 1150°C and 1250°C. Moreover, it was necessary to appropriately increase the content of iron and ferro-boron.

    参考文献
    [1] Li J.L, Li J, Li C. Reactive Synthesis of FeWB Powders and Preparation of Bulk Materials [J]. International Journal of Refractory Metals Hard Materials, 2014, 46(1):80–83.
    [2] Li C, Li J.L, Li J, Liu Y. Study on the synthesis behavior of Fe–W–B powders and the preparation of bulk[J]. Advanced Powder Technology, 2015, 26(5): 1410-1416.
    [3] Haschke H, Nowotny H, Benesovsky F. Untersuchungen in den Dreistoffen: {Mo, W}?{Fe, Co, Ni}?B[J]. Monatshefte Für Chemie Und Verwandte Teile Anderer Wissenschaften, 1966, 97(5):1459-1468.
    [4] Leithe-Jasper A, Klesnar H, Rogl P. Reinvestigation of isothermal sections in M(M= Mo, W)-Fe-B ternary systems at 1323 K[J]. Journal of the Japan Institute of Metals(Japan), 2000, 64(2): 154-162.
    [5] Takagi K, Komai M, Matsuo S. Powder metallurgy proceeding of world congress[J]. Paris: European Powder Metallurgy Association, 1994, 1: 227.
    [6] Rao D, Upadhyaya G S. Sintering of Mo2FeB2 layered cermet containing SiC fibers[J]. Materials Chemistry Physics, 2001, 70(70):336-339.
    [7] Yuan B, Zhang G J, Kan Y M, et al. Reactive synthesis and mechanical properties of Mo2NiB2 based hard alloy[J]. International Journal of Refractory Metals and Hard Materials, 2010, 28(2): 291-296.
    [8] Takagi K, Yamasaki Y, Komai M. High-strength boride base hard materials[J]. Journal of Solid State Chemistry, 1997, 133(1): 243-248.
    [9] Komai M, Yamasaki Y, Takagi K I, Watanabe T. Effects of Cr on the mechanical properties and phase formation of Mo2NiB2 boride base cermet[J]. Advances in Powder Metallurgy, 1992, 8:81-88.
    [10] Takagi K. High tough boride base cermets produced by reaction sintering[J]. Materials chemistry and physics, 2001, 67(1): 214-219.
    [11] Takagi K. Development and application of high strength ternary boride base cermets[J]. Cheminform, 2006, 179(9):2809-2818.
    [12] Takagi K, Ohira S, Ide T, Watanabe T. New multiple-boride base hard alloy. Met Powder Rep 1987;42:483–90.
    [13] Takagi K I, Koike W, Ai M, et al. Effects of Cr on the properties of Mo2NiB2 ternary boride[J]. Solid State Sciences, 2012, 14(11-12):1643–1647.
    [14] Telle R, Ai M, Music D, et al. Boride-based nano-laminates with MAX-phase-like behavior [J]. Journal of Solid State Chemistry, 2006, 179(9):2850-2857.
    [15] Otani S, Ohashi H, Ishizawa Y. Lattice constants and nonstoichiometry of WB2-x[J]. Journal of alloys and compounds, 1995, 221(1): L8-L10.
    [16] Duschanek H, Rogl P. Critical assessment and thermodynamic calculation of the binary system boron-tungsten (BW) [J]. Journal of phase equilibria,1995,16(2):150-161.
    引证文献
引用本文

余虹位,李军,李程,刘颖. FeWB基陶瓷在真空烧结过程中的组织和相转变[J].稀有金属材料与工程,2018,47(2):463~468.[Hongwei Yu, Jun Li, Cheng Li, Ying Liu. Synthesis and microstructure evolution of FeWB based cermets during the vacuum sintering[J]. Rare Metal Materials and Engineering,2018,47(2):463~468.]
DOI:[doi]

复制
文章指标
  • 点击次数:1330
  • 下载次数: 1482
  • HTML阅读次数: 146
  • 引用次数: 0
历史
  • 收稿日期:2016-03-10
  • 最后修改日期:2016-06-03
  • 录用日期:2016-06-27
  • 在线发布日期: 2018-03-15