+高级检索
Al0.25Cu0.75FeNiCo颗粒增强铝合金的组织与性能
作者:
作者单位:

华南理工大学广东省金属新材料制备与成形重点实验室,华南理工大学广东省金属新材料制备与成形重点实验室,华南理工大学广东省金属新材料制备与成形重点实验室,华南理工大学广东省金属新材料制备与成形重点实验室

基金项目:

广东省科技计划项目;广东省自然科学基金资助项目


Microstructure and mechanical properties of Al0.25Cu0.75FeNiCo HEAs particulates reinforced aluminum alloy
Author:
Affiliation:

Guangdong Key Laboratory for Advanced Metallic Mateirals Processing,South China University of Technology,Guangdong Key Laboratory for Advanced Metallic Mateirals Processing,South China University of Technology,Guangdong Key Laboratory for Advanced Metallic Mateirals Processing,South China University of Technology,Guangdong Key Laboratory for Advanced Metallic Mateirals Processing,South China University of Technology

Fund Project:

Guangdong Science and Technology Plan, Natural Science Foundation of Guangdong Province

  • 摘要
  • | |
  • 访问统计
  • |
  • 参考文献 [15]
  • |
  • 相似文献 [20]
  • | | |
  • 文章评论
    摘要:

    高熵合金是一种新型的结构与功能材料,源于金属-金属间天然的界面结合特性,高熵合金与铝合金基体间的界面润湿性极好。本文采用Al0.25Cu0.75FeNiCo高熵合金颗粒作为增强相来增强铝合金,研究高熵合金含量变化对复合材料显微组织和力学性能的影响。结果表明:高熵合金增强相在基体中分布均匀,随着高熵合金体积分数的增大,局部会出现少量颗粒团聚现象。复合材料的弹性模量和硬度随着高熵合金含量的增加而增大,但复合材料的抗拉强度和延伸率呈现出先增大后降低的趋势。当高熵合金的体积分数为5%时,复合材料的极限抗拉强度和伸长率达到最大值(σb:437.6 MPa,ε:11.42%),比铝合金基体分别提高了20.54%和36.6%。TEM分析表明,高熵合金颗粒和铝合金良好的界面结合状态使得复合材料具有较高的综合力学性能。

    Abstract:

    High entropy alloy is a novelty structural and functional materials. For the excellent interfacial wettability between HEAs and Al alloy, the interfaces of HEAs-Al is well-bonded. In this paper, the Al0.25Cu0.75FeNiCo particles were used as the reinforcement to improve the strength and ductility of aluminum alloy. The effects of HEAs content on microstructure and mechanical properties of the composites were investigated. Microstructure observation showed that the HEAs particles were distributed uniformly in the composites. With the reinforcement content increasing, particles clustering were found in local region. Results showed that the modulus and hardness of the composites increase with increasing of reinforcement content. While the tensile strength and elongation of the composites increase firstly then drop with increasing of reinforcement content. At a reinforcement content of 5%, the maximum tensile strength and elongation of the composites is 437.6 MPa and 11.42%, which were 20.54% and 36.6% higher than those of the aluminum alloy matrix. The excellent comprehensive mechanical properties is due to the well-bonded interfaces of HEAs-Al.

    参考文献
    [1]D. Z. Zhu, G. H. Wu, G. Q. Chen, Q. Zhang. Dynamic Deformation Behavior of a High Reinforcement Content TiB2/Al Composite. Mater. Sci. Eng. A. 2008, 487: 536~540.
    [2]Zhang Y, Zuo T T, Tang Z, et al. Microstructures and properties of high-entropy alloys [J]. Progress in Materials Science. 2014, 61: 1-93.
    [3]J.W. Yeh, S.K. Chen, S.J. Lin, J.Y. Gan, T.S. Chin, T.T. Shun, et al. Nanostructured high-entropy alloys with multiple principal elements: Novel alloy design concepts and outcomes[J]. Adv Eng Mater, 2004, 6(5): 299-303.
    [4]G. Dirras, H. Couque, L. Lilensten, A. Heczel, D. Tingaud, J.-P. Couzinié, L. Perrière, J. Gubicza, I. Guillot. Mechanical behavior and microstructure of Ti20Hf20Zr20Ta20Nb20 high-entropy alloy loaded under quasi-static and dynamic compression conditions. Materials Characterization 2016,111 : 106–113
    [5]N. Kumar, Q. Ying, X. Nie, R.S. Mishra, Z. Tang, P.K. Liaw, R.E. Brennan, K.J. Doherty, K.C. Cho. High strain-rate compressive deformation behavior of the Al0.1CrFeCoNi high entropy alloy. Mater. Des. 2015,86:598–602
    [6]S. Varalakshmi, G. Appa Rao, M. Kamaraj, B.S. Murty. Hot consolidation and mechanical properties of nanocrystalline equiatomic AlFeTiCrZnCu high entropy alloy after mechanical alloying [J]. J Mater Sci, 2010, 45:5158-5163.
    [7]S. Praveen, B.S. Murty, Ravi S. Kottada. Alloying behavior in multi-component AlCoCrCuFe and NiCoCrCuFe high entropy alloys [J]. Mater. Sci. Eng. A., 2012, 534:83-89.
    [8]Zhang Y, Qiao J, Liaw P K. A Brief Review of High Entropy Alloys and Serration Behavior and Flow Units[J]. JOURNAL OF IRON AND STEEL RESEARCH INTERNATIONAL. 2016, 23(1): 2-6.
    [9]C. Huang, Y.Z. Zhang, R. Vilar, J.Y. Shen. Dry sliding wear behavior of laser clad TiVCrAlSi high entropy alloy coatings on Ti–6Al–4V substrate[J]. Mater Des, 2012, 41:338–343
    [10]Meng G, Yue T M, Lin X, et al. Laser surface forming of AlCoCrCuFeNi particle reinforced AZ91D matrix composites[J]. Optics Laser Technology. 2015, 70: 119-127.
    [11]Wang Z W, Zheng R, Ma C, et al. Fabrication and Mechanical Properties of 2024 Aluminum Alloy Reinforced by FeNiCrCoAl3 High Entropy Particles[J]. Journal of Harbin Institute of Technology 2013, 20: 119-122.
    [12]K. Praveen Kumar, M. Gopi Krishna, J. Babu Rao, N.R.M.R. Bhargava, Fabrication and characterization of 2024 aluminium -High entropy alloy composites, J ALLOY COMPD, 2015,640: 421-427.
    [13]W.P. Chen, Z.Q. Fu, S.C. Fang, Y.P. Wang, H.Q. Xiao, D.Z. Zhu. Processing, microstructure and properties of Al0.6CoNiFeTi0.4 high entropy alloy with nanoscale twins[J]. Mater. Sci. Eng. A., 2013, 565:439–444.
    [14]Yunhe Zhang, Lili Yan, Menghe Miao, Qingwen Wang, Gaohui Wu. Microstructure and mechanical properties of z-pinned carbon fiber reinforced aluminum alloy composites. Materials and Design 2015, 86: 872-877.
    [15]Dezhi Zhu, Qi Chen, Zhijun Ma. Impact behavior and damage characteristics of hybrid composites reinforced by Ti fibers and M40 fibers. Materials and Design, 2015,76: 196-201.
    引证文献
    网友评论
    网友评论
    分享到微博
    发 布
引用本文

朱德智,丁霞,戚龙飞,陈奇. Al0.25Cu0.75FeNiCo颗粒增强铝合金的组织与性能[J].稀有金属材料与工程,2017,46(11):3400~3404.[Zhu Dezhi, Ding Xia, Qi Longfei, Chen Qi. Microstructure and mechanical properties of Al0.25Cu0.75FeNiCo HEAs particulates reinforced aluminum alloy[J]. Rare Metal Materials and Engineering,2017,46(11):3400~3404.]
DOI:[doi]

复制
文章指标
  • 点击次数:1213
  • 下载次数: 1118
  • HTML阅读次数: 144
  • 引用次数: 0
历史
  • 收稿日期:2016-08-24
  • 最后修改日期:2016-12-19
  • 录用日期:2017-01-06
  • 在线发布日期: 2017-12-13